Chris Spencer edited Theory.tex  about 10 years ago

Commit id: e4506b3315c2733c1a87a2d61d8fdd71ef8f7921

deletions | additions      

       

\newcommand{\tensor}[1]{\stackrel{\leftrightarrow}{#1}}  Gaus's Law is in free space is \[\nabla\cdot\vec{E}=\frac{\rho}{\epsilon_0}\]. In a plasma $\epsilon_0$ becomes $\tensor{\epsilon}$ and the relation becomes \[\nabla\cdot(\epsilon\vec{E})=\rho\] and noting that $\vec{E}=-\nabla\phi$ and tensor $\kappa=\tensor{\epsilon}\epsilon_0$, Gaus's Law can be rewritten as \[\vec{D}=\epsilon_0\tensor{\kappa}\cdot\vec{E}\] where $\tensor{\kappa}$ is the dielectric tensor.   For a cold plasma in an electric field, there will be no contribution to the to the dielectric tensor due to the ions having low thermal velocity in comparison to the electrons. Then the dielectric tensor has terms \[\kappa_{xx}=\kappa_{yy}=1-\frac{\omega_{pe}^2}{\omega^2-\omega_{ce}^2}\]  \[\kappa_{xy}=\kappa_{yx}=\frac{i\omega_{ce}\omega_{ce}^2}{\omega^2-\omega_{ce}^2}\] and \[\kappa_{\parallel}=1-\frac{\omega_{pe}^2}{omega^2)\]