Chris Spencer edited Theory.tex  about 10 years ago

Commit id: a66896282203584a287bf1e776ae70cf537a1bad

deletions | additions      

       

\section{Theory}  \newcommand{\tensor}[1]{\stackrel{\leftrightarrow}{#1}}  Gaus's Law is in free space is \[\nabla\cdot\vec{E}=\frac{\rho}{\epsilon_0}\]. In a plasma $\epsilon_0$ becomes $\tensor{\epsilon}$ and the relation becomes \[\nabla\cdot(\epsilon\vec{E})=\rho\] and noting that $\vec{E}=-\nabla\phi$ and tensor $\kappa=\tensor{\epsilon}\epsilon_0$, Gaus's Law can be rewritten as \[\vec{D}=\epsilon_0\tensor{\kappa}\cdot\vec{E}\] where $\tensor{\kappa}$ is the dielectric tensor.   For a cold plasma in an electric field, there will be no contribution to the to the dielectric tensor due to the ions having low thermal velocity in comparison to the electrons.