Michael Morag edited Theory.tex  about 10 years ago

Commit id: 18a3c3baea6378ca297e58cecf0b1a3ec3d2783f

deletions | additions      

       

\section{Theory}  \newcommand{\tensor}[1]{\stackrel{\leftrightarrow}{#1}}  Gauss's Lawis  in free space is \[\nabla\cdot\vec{E}=\frac{\rho_{ext}}{\epsilon_0}\]. In a plasma $\epsilon_0$ becomes $\tensor{\epsilon}$ and the relation becomes \[\nabla\cdot(\epsilon\vec{E})=\rho_{ext}\] and noting that $\vec{E}=-\nabla\phi$ and tensor $\kappa=\tensor{\epsilon}\epsilon_0$, Gauss's Law can be rewritten as \[\vec{D}=\epsilon_0\tensor{\kappa}\cdot\vec{E}\] where $\tensor{\kappa}$ is the dielectric tensor. For a cold plasma in an electric field, there will be no contribution to the to the dielectric tensor due to the ions having low thermal velocity in comparison to the electrons. Then the dielectric tensor has components \[\kappa_{\perp}=\kappa_{xx}=\kappa_{yy}=1-\frac{\omega_{pe}^2}{\omega^2-\omega_{ce}^2}\]  \[\kappa_{xy}=\kappa_{yx}=\frac{i\omega_{ce}\omega_{ce}^2}{\omega^2-\omega_{ce}^2}\]  \[\kappa_{zz}=\kappa_{\parallel}=1-\frac{\omega_{pe}^2}{\omega^2}\]