Chris Spencer edited Theory.tex  about 10 years ago

Commit id: 097484efb6550cb9204ca501f0c54dc958b767d1

deletions | additions      

       

\[\kappa_{xy}=\kappa_{yx}=\frac{i\omega_{ce}\omega_{ce}^2}{\omega^2-\omega_{ce}^2}\]  \[\kappa_{\parallel}=1-\frac{\omega_{pe}^2}{\omega^2}\]  It is needed to define a potential for an oscillating point charge in this system. Define $\rho$ from Gaus's law as \[\rho=qe^{-i\omega t}\sigma(\vec{r})\]  where $\sigma(\vec{r})$ is the delta function at $\vec{r}$ at zero. Use fourier analysis on Gaus's law and note that $E=-\nabla\phi$ to solve for the potential.It is obtained that $\phi(r,z)=\frac{q}{4\pi\epsilon_{o}\sqrt{\rho^2+z^2}}$. The resonance cone phenomena is described by electric fields so take the negative gradient of $phi$ in cylindrical coordinates and the electric field is in the radial direction is \[E_r=-\frac{qe^{i\omega t}}{4\pi\epsilon_{0}\kappa_{\perp}\sqrt{\kappa_{\parallel}}}\left(\frac{\rho}{(\frac{z^2}{\kappa_{parallel}}+\frac{\rho^2}{\kappa_{perp}})^{3/2}}\right)\] t}}{4\pi\epsilon_{0}\kappa_{\perp}\sqrt{\kappa_{\parallel}}}\left(\frac{\rho}{(\frac{z^2}{\kappa_{\parallel}}+\frac{\rho^2}{\kappa_{\perp}})^{3/2}}\right)\]