chris spencer edited Theory.tex  about 10 years ago

Commit id: 7c00ffd089a59bbcb1be96915d746264f85825e0

deletions | additions      

       

\section{Theory}  \center{Appleton's equation is given by}  \tiny{\begin{equation}  [\eta^2=1-\frac{\omega_{pe}^2}{\omega^2\left((1+\frac{i\nu}{\omega})-\frac{\omega_{ce}^2\sin^2\theta}{2\omega^2\left(1-\frac{\omega_{pe}^2}{\omega^2}\right)}\pm\sqrt{\frac{(\omega_{ce}^2\sin^2\theta)^2}{4(1-\frac{\omega_{pe}^2}{\omega^2})}+\frac{\omega_{ce}^2cos^2\theta}{\omega^2}}\right)}\]}  \end{equation} \tiny{[\eta^2=1-\frac{\omega_{pe}^2}{\omega^2\left((1+\frac{i\nu}{\omega})-\frac{\omega_{ce}^2\sin^2\theta}{2\omega^2\left(1-\frac{\omega_{pe}^2}{\omega^2}\right)}\pm\sqrt{\frac{(\omega_{ce}^2\sin^2\theta)^2}{4(1-\frac{\omega_{pe}^2}{\omega^2})}+\frac{\omega_{ce}^2cos^2\theta}{\omega^2}}\right)}\]}  for an infinite plasma[2]. This describes the index of refraction for a whistler wave where $\eta^2=\left(\frac{kc}{\omega}\right)^2$