chris spencer edited Theory.tex  about 10 years ago

Commit id: 02f64c17b1a128c8c252f740a35b6be2c47e7627

deletions | additions      

       

\section{Theory}  Appleton's equation is given by \begin{equation}  \eta^2=\left(\frac{kc}{\omega}\right)^2=1-\frac{\omega_{pe}^2}{\omega^2\left((1+\frac{i\nu}{\omega})-\frac{\omega_{ce}^2\sin^2\theta}{2\omega^2\left(1-\frac{\omega_{pe}^2}{\omega^2}\right)}\pm\sqrt{\frac{(\omega_{ce}^2\sin^2\theta)^2}{4(1-\frac{\omega_{pe}^2}{\omega^2})}+\frac{\omega_{ce}^2cos^2\theta}{\omega^2}}\right)} \eta^2=1-\frac{\omega_{pe}^2}{\omega^2\left((1+\frac{i\nu}{\omega})-\frac{\omega_{ce}^2\sin^2\theta}{2\omega^2\left(1-\frac{\omega_{pe}^2}{\omega^2}\right)}\pm\sqrt{\frac{(\omega_{ce}^2\sin^2\theta)^2}{4(1-\frac{\omega_{pe}^2}{\omega^2})}+\frac{\omega_{ce}^2cos^2\theta}{\omega^2}}\right)}  \end{equation}