Rosa edited At_the_band_center_the__.tex  almost 9 years ago

Commit id: fdbb4ef7dd71469ad1d3710e471fb8425abdc67c

deletions | additions      

       

G^{r}_{n1}=\exp{-i\phi}{t}  \end{equation}  \subsection{Impurity coupled to the semi-infinite chain}  Now we consider that the $0$ state is coupled to the semi-infinite chain with $V$ as the tunneling amplitude amplitude. The Dyson equation for the impurity site Green function reads  \begin{equation}  G_{00}=g_d+g_{11}+V_{10}G_{10},  \end{equation}  The bare dot Green function is  \begin{equation}  g_{d}=\frac{1}{\omega-\epsilon_d}  \end{equation}  Now we take $V_{10}=V$. Then, the chain Green function $G_{10}$ coupled to the impurity reads  \begin{equation}  G_{10}=g_{10}+g_{10}V_{01}G_{00}=g_{ch}VG_{10},  \end{equation}  With $g_{10}=0$ and $V_{01}=V_{10}=V$. Replacing back $G_{10}$ in the Dyson equation for $G_{00}$ we have  \begin{equation}  G_{00}=\frac{1}{g_d^{-1}-|V|^2 g_{ch}}  \end{equation}  For energies around the band center we can neglect the energy dependence of $g_{ch}\approx \frac{-i}{t}$, then  \begin{equation}  G_{00}\approx \frac{1}{g_d^{-1}+i|V|^2/t}=\frac{1}{g_d^{-1}+i\Gamma/2}  \end{equation}  with $\Gamma=2|V|^2/t$. The extension to two leads is straightforward  \begin{equation}  G_{00}\approx \frac{1}{g_d^{-1}-\Sigma_{0}}  \end{equation}  with   \begin{equation}  \Sigma_{0}=-i(|V_{01}|^2 g_{ch}^L+ |V_{01}|^2 g_{ch}^R)=-i(\Gamma_L+\Gamma_R)  \end{equation}  We now determine the displaced charge at a distance $r$ from the impurity. This quantity is defined as  \begin{equation}  \Delta_{11}=G_{11}-G^{0}_{11}  \end{equation}  where $G^{0}_{11}$ is the Green function in the absence of impurity. We write down the two Dyson equations for $G_{11}$ and $G_{01}$. These are  \begin{eqnarray}  G_{11}&=&g_{11}+g_{11}V_{10}G_{01}, \\  G_{01}&=&g_{01}+g_{00}V_{01}G_{11}  \end{eqnarray}  where $g_{00}=g_{d}$, and $g_{11}=g_{ch}$. We obtain  \begin{equation}  G_{11}\approx \frac{1}{g_{11}^{-1}-|V_{01}|^2 g_{00}}  \end{equation}