Rosa edited untitled.tex  about 8 years ago

Commit id: f408edcd6576e4ec17bfb0c3034a69ed4c9bc94e

deletions | additions      

       

\end{equation}  Now we compute the lead-lead Green function $G^{t,h}_{kq}(t,t')=\langle T c_k^\dagger(t) c_q(t')\rangle$ that appears in the previous expression. We compute its equation-of-motion  \begin{equation}  i\hbar \partial_{t'} G_{kq}^{h,t}(t,t') G_{kq}^{t,h}(t,t')  = \epsilon_q G_{kq}^{t,h}(t,t') + \sum_\beta V_{\beta q}^* G^{h,t}_{k\beta}(t,t') G^{t,h}_{k\beta}(t,t')  \end{equation}  Then we get  \begin{equation}  G_{kq}^{t,h}(t,t') = G_{kq}^{t,h}(t,t')\delta_{kq} + \frac{-1}{\hbar} \sum_\tau\int dt_1 G^{t,h}_{k\tau}(t,t')V_{\tau q}^* g_{q}^{t,h}(t_1,t')  \end{equation}  In a similar way we can obtain the mixed (hole) lead-Majorana Green function $G_{k\beta}^{t,h}{t,t'}$ $G_{k\beta}^{t,h}(t,t')$  \begin{equation}  G_{k\tau}^{t,h}(t,t') = \frac{-1}{\hbar} \sum_{\theta}\int dt_1 g_{k}^{t,h}(t,t_1) V_{\theta k} G^{t}_{\theta\tau}(t,t')  \end{equation}  Then, inserting the previous expression into the equation for $G_{qk}^{h,t}(t,t')$, we obtain  \begin{equation}  G_{qk}^{h,t}(t,t') G_{qk}^{t,h}(t,t')  = G_{qk}^{h,t}(t,t')\delta_{kq} G_{qk}^{t,h}(t,t')\delta_{kq}  + \sum_{\tau\theta}\int \frac{-dt_1}{\hbar}\frac{-dt_2}{\hbar} g_{q}^{h,t}(t,t_1) g_{q}^{t,h}(t,t_1)  V_{\tau q} G^{t}_{\tau\theta}(t_1,t_2)V_{\theta k}^* g_{k}^{h,t}(t_2,t') g_{k}^{t,h}(t_2,t')  \end{equation}  The rest of equations for the Green functions that appear in the noise expression are already in J. S note.   Now we employ the following definition for the Fourier transform 

Now we enter the expression for $G_{kq}^{t,h}(t,t')$ in the frequency domain  \begin{equation}  G_{qk}^{h,t}(\omega) G_{qk}^{t,h}(\omega)  = g_{q}^{t,h}(\omega)\delta_{kq} + \sum_{\tau\theta} g_{q}^{t,h}(\omega) V_{\tau q} G^{t}_{\tau\theta}(\omega)V_{\theta k}^* g_{k}^{t,h}(\omega)\,, \end{equation}  \begin{multline}  S^>(\omega)=\frac{e^2}{\hbar^2}\sum_{k\beta,q\gamma} \frac{1}{2\pi}\int_{-\infty}^\infty d\epsilon   \\   \Biggr\{  V_{\beta k} V_{\gamma q}^{*} [G^>_{\beta\gamma}(\epsilon) G^{h,<}_{qk}(\omega+\epsilon) G^{<,h}_{qk}(\omega+\epsilon)  - G^{>}_{\beta q}(\epsilon)G^{h,<}_{\gamma q}(\epsilon)G^{<,h}_{\gamma  k}(\epsilon+\omega)] + V_{\beta k}^{*}V_{\gamma q} [G^{>,h}_{kq}(\epsilon_1) G^{<}_{\gamma\beta}(\epsilon+\omega) G^{>,h}_{\gamma\beta}(\epsilon+\omega)  - G^{h,>}_{k\gamma}(\epsilon)G^{<}_{q G^{>,h}_{k\gamma}(\epsilon)G^{<}_{q  \beta}(\epsilon+\omega)]\Biggr\}\,, \end{multline}  Let us treat first the following term: $e^2/\hbar^2\sum_{k\beta,q\gamma} V_{\beta k} V_{\gamma q}^{*} [G^>_{\beta\gamma}(\epsilon) G^{h,<}_{qk}(\omega+\epsilon)]$ G^{<,h}_{qk}(\omega+\epsilon)]$  Then,  \begin{eqnarray}  &&G_{qk}^{h,<}(\omega+\epsilon) &&G_{qk}^{<,h}(\omega+\epsilon)  = g_{q}^{h,<}(\omega+\epsilon)\delta_{kq} g_{q}^{<,h}(\omega+\epsilon)\delta_{kq}  + \sum_{\tau\theta} [g_{q}^{h,r}(\omega+\epsilon) [g_{q}^{r,h}(\omega+\epsilon)  V_{\tau q} G^{r}_{\tau\theta}(\omega+\epsilon)V_{\theta k}^* g_{k}^{h,<}(\omega)\nonumber g_{k}^{<,h}(\omega)\nonumber  \\  &&+g_{q}^{h,r}(\omega+\epsilon) &&+g_{q}^{r,h}(\omega+\epsilon)  V_{\tau q} G^{<}_{\tau\theta}(\omega+\epsilon)V_{\theta k}^* g_{k}^{h,a}(\omega+\epsilon)+g_{q}^{h,<}(\omega+\epsilon) g_{k}^{a,h}(\omega+\epsilon)+g_{q}^{<,h}(\omega+\epsilon)  V_{\tau q} G^{a}_{\tau\theta}(\omega+\epsilon)V_{\theta k}^* g_{k}^{h,a}(\omega+\epsilon)\,, g_{k}^{a,h}(\omega+\epsilon)\,,  \end{eqnarray}  On the other hand we have for $G^>_{\beta\gamma}(\epsilon)$ (accordingly with J.S note)  \begin{eqnarray}  G^>_{\beta\gamma}(\epsilon) = \sum_{p\alpha\delta} G^r_{\beta \alpha}(\epsilon) [V^*_{\alpha p} g^>_{p}(\epsilon)V_{\delta p} + V_{\alpha p} g^{h,>}_{p}(\epsilon) g^{>,h}_{p}(\epsilon)  V^*_{\delta p}]G^a_{\delta \gamma}(\epsilon) \end{eqnarray}  We need to compute the following product of Green functions: $P^>(t,t')=e^2/\hbar^2\sum_{k\beta,q\gamma} G^>_{\beta\gamma}(\epsilon)G_{kq}^{h,<}(\omega+\epsilon)$ V_{\beta k}V^*_{\gamma q} G^>_{\beta\gamma}(\epsilon)G_{kq}^{<,h}(\omega+\epsilon)$  \begin{align*}   &\sum_{k\alpha\delta} & \sum_{k q\beta\gamma}  V_{\gamma q}^* V_{\beta k} G^>_{\beta\gamma}(\epsilon) G_{kq}^{h,<}(\omega+\epsilon) G_{kq}^{<,h}(\omega+\epsilon)  = \sum_{k\alpha\delta} \sum_{k,p,q \beta \alpha\delta \gamma} \Biggr\{  V_{\gamma q}^* V_{\beta k}\Biggr\{ k}  G^r_{\beta \alpha}(\epsilon) [V^*_{k\alpha} g^>_{k}(\epsilon)V_{\delta k} [V^*_{p\alpha} g^>_{p}(\epsilon)V_{\delta p}  + V_{\alpha k} g^{h,>}_{k}(\epsilon) p} g^{>,h}_{p}(\epsilon)  V^*_{\delta k}]G^a_{\delta p}]G^a_{\delta  \gamma}(\epsilon) g_{q}^{h,<}(\omega+\epsilon)\delta_{kq} g_{q}^{<,h}(\omega+\epsilon)\delta_{kq}  \\ \nonumber &+\sum_{p \alpha\delta}  G^r_{\beta \alpha}(\epsilon) [V^*_{\alpha p} g^>_{p}(\epsilon)V_{ \delta}p + V_{\alpha p} g^{h,>}_{p}(\epsilon) g^{>,h}_{p}(\epsilon)  V^*_{\delta p}]G^a_{\delta \gamma}(\epsilon) [ V_{\gamma q}^* g_{q}^{h,r}(\omega+\epsilon) g_{q}^{r,h}(\omega+\epsilon)  V_{\tau q} G^{r}_{\tau\theta}(\omega+\epsilon)V_{\theta k}^* g_{k}^{h,<}(\omega) g_{k}^{<,h}(\omega)  V_{\beta k} \nonumber \\  &\sum_{p \alpha\delta} & +  G^r_{\beta \alpha}(\epsilon) [V^*_{\alpha p} g^>_{p}(\epsilon)V_{ \delta}p + V_{\alpha p} g^{h,>}_{p}(\epsilon) g^{>,h}_{p}(\epsilon)  V^*_{\delta p}]G^a_{\delta \gamma}(\epsilon) [ V_{\gamma q}^* g_{q}^{h,r}(\omega+\epsilon) g_{q}^{r,h}(\omega+\epsilon)  V_{\tau q} G^{<}_{\tau\theta}(\omega+\epsilon)V_{\theta k}^* g_{k}^{h,a}(\omega) g_{k}^{a,h}(\omega)  V_{\beta k} \nonumber   \\  &+ \sum_{p \alpha\delta} G^r_{\beta \alpha}(\epsilon) [V^*_{\alpha p} g^>_{p}(\epsilon)V_{ \delta}p + V_{\alpha p} g^{h,>}_{p}(\epsilon) g^{>,h}_{p}(\epsilon)  V^*_{\delta p}]G^a_{\delta \gamma}(\epsilon) [ V_{\gamma q}^* g_{q}^{h,<}(\omega+\epsilon) g_{q}^{<,h}(\omega+\epsilon)  V_{\tau q} G^{a}_{\tau\theta}(\omega+\epsilon)V_{\theta k}^* g_{k}^{h,a}(\omega) g_{k}^{a,h}(\omega)  V_{\beta k} \Biggr\} \,,  \end{align*}  We now compute separately the different parts of the previous expression for the ac noise