Rosa edited untitled.tex  about 8 years ago

Commit id: e85c996643be4a1193ec07b712e90eb87d25b5f9

deletions | additions      

       

\end{eqnarray}  We need to compute the following product of Green functions: $G^>_{\beta\gamma}(\epsilon)G_{kq}^{h,<}(\omega+\epsilon)$  \begin{eqnarray}  &&G^>_{\beta\gamma}(\epsilon) G_{kq}^{h,<}(\omega+\epsilon) = \sum_{k\alpha\delta} G^r_{\beta \alpha}(\epsilon) [V^*_{k\alpha} g^<_{k}(\omega)V_{\delta g^>_{k}(\omega)V_{\delta  k} + V_{\alpha k} g^{h,<}_{k}(\omega) g^{h,>}_{k}(\omega)  V^*_{\delta k}]G^a_{\delta \gamma}(\epsilon) g_{q}^{h,<}(\omega+\epsilon)\delta_{kq} \\ \nonumber &+& \sum_{p\beta\gamma\alpha\gamma} G^r_{\beta \alpha}(\epsilon) [V^*_{\alpha p} g^<_{p}(\epsilon)V_{ g^>_{p}(\epsilon)V_{  \delta}p + V_{\alpha p} g^{h,<}_{p}(\epsilon) g^{h,>}_{p}(\epsilon)  V^*_{\delta p}]G^a_{\delta \gamma}(\epsilon) [g_{q}^{h,r}(\omega+\epsilon) V_{\gamma q} G^{r}_{\gamma\beta}(\omega+\epsilon)V_{\beta k}^* g_{k}^{h,<}(\omega) \nonumber \\  &&+G^r_{\beta \alpha}(\epsilon) [V^*_{\alpha p} g^<_{p}(\epsilon)V_{ g^>_{p}(\epsilon)V_{  \delta}p + V_{\alpha p} g^{h,<}_{p}(\epsilon) g^{h,>}_{p}(\epsilon)  V^*_{\delta p}]G^a_{\delta \gamma}(\epsilon) [g_{q}^{h,r}(\omega+\epsilon) V_{\gamma q} G^{<}_{\gamma\beta}(\omega+\epsilon)V_{\beta k}^* g_{k}^{h,a}(\omega+\epsilon)]\\ \nonumber &&+G^r_{\beta \alpha}(\epsilon) [V^*_{\alpha p} g^<_{p}(\epsilon)V_{ g^>_{p}(\epsilon)V_{  \delta}p + V_{\alpha p} g^{h,<}_{p}(\epsilon) g^{h,>}_{p}(\epsilon)  V^*_{\delta p}]G^a_{\delta \gamma}(\epsilon)[g_{q}^{h,<}(\omega+\epsilon) V_{\gamma q} G^{a}_{\gamma\beta}(\omega+\epsilon)V_{\beta k}^* g_{k}^{h,a}(\omega+\epsilon)]\,, \end{eqnarray}  We now compute separately the different parts of the previous expression for the ac noise  \begin{eqnarray}  S^{>,1}(\omega)= \frac{e^2}{\hbar^2}\int_{-\infty}^\infty \frac{d\epsilon}{2\pi} \sum_{k,q,p\beta\gamma\alpha\delta} G^r_{\beta \alpha}(\epsilon) [V^*_{\alpha p} g^<_{p}(\epsilon)V_{ g^>_{p}(\epsilon)V_{  \delta p} + V_{\alpha p} g^{h,<}_{p}(\epsilon) g^{h,>}_{p}(\epsilon)  V^*_{\delta p}]G^a_{\delta \gamma}(\epsilon)[V_{\beta k} g_{q}^{h,<}(\omega+\epsilon)V^*_{\gamma q}\delta_{kq} \end{eqnarray}  \begin{eqnarray}  S^{>,2}(\omega) = \frac{e^2}{\hbar^2} \int_{-\infty}^\infty \frac{d\epsilon}{2\pi} \sum_{k,q,p\beta\gamma\alpha\delta} G^r_{\beta \alpha}(\epsilon) [V_{\alpha p}^* g^<_{p}(\epsilon)V_{\delta g^>_{p}(\epsilon)V_{\delta  p} + V_{\alpha p} g^{h,<}_{p}(\epsilon) g^{h,>}_{p}(\epsilon)  V_{\delta p}^*]G^a_{\delta \gamma}(\epsilon) [V_{\gamma q}^* g_{q}^{h,r}(\omega+\epsilon) V_{\gamma q} G^{<}_{\gamma\beta}(\omega+\epsilon) V_{\beta k} g_{k}^{h,a}(\omega+\epsilon) V_{\beta k}^*] \end{eqnarray}  \begin{eqnarray}  S^{>,3}(\omega)= \frac{e^2}{\hbar^2} \int_{-\infty}^\infty \sum_{k,q,p\beta\gamma\alpha\delta} G^r_{\beta \alpha}(\epsilon) [V^*_{\alpha p} g^<_{p}(\epsilon)V_{ g^>_{p}(\epsilon)V_{  \delta p} + V_{\alpha p} g^{h,<}_{p}(\epsilon) g^{h,>}_{p}(\epsilon)  V^*_{\delta p}]G^a_{\delta \gamma}(\epsilon) [V_{\gamma q}^* g_{k}^{h,r}(\omega+\epsilon) V^*_{\gamma q} G^{<}_{\gamma\beta}(\omega+\epsilon)V_{\gamma q} g_{q}^{h,a}(\omega+\epsilon) V^*_{\gamma q}] \end{eqnarray}  \begin{eqnarray}  S^{>,4}(\omega)= \frac{e^2}{\hbar^2} \int_{-\infty}^\infty \frac{d\epsilon}{2\pi} \sum_{k,q,p\beta\gamma\alpha\delta} G^r_{\beta \alpha}(\epsilon)[V^*_{\alpha p} g^<_{p}(\epsilon)V_{ g^>_{p}(\epsilon)V_{  \delta p } + V_{\alpha p} g^{h,<}_{p}(\epsilon) g^{h,>}_{p}(\epsilon)  V^*_{\delta p}] G^a_{\delta \gamma}(\epsilon)[V_{\beta k} g_{k}^{h,<}(\omega+\epsilon) V_{\gamma k} G^{a}_{\gamma\beta}(\omega+\epsilon)V_{\beta q}^* g_{q}^{h,a}(\omega+\epsilon)V^*_{\gamma q}] \end{eqnarray}