Rosa edited untitled.tex  about 8 years ago

Commit id: e396c4b87cdae25eefe929dc9348fc10ddabc322

deletions | additions      

       

Q^{>,4}(\omega) = \frac{ 4e^2}{\hbar^2}\sum_{k\beta,q\gamma,\alpha\mu\nu\tau } \int \frac{d\epsilon}{2\pi}[\Gamma_{\beta\alpha}]G_{\alpha\gamma}^a(\epsilon) [-i\Gamma_{\gamma\tau}]G_{\tau\beta}^a(\omega+\epsilon)f_e(\omega+\epsilon)(1-f_e(\epsilon))  \end{eqnarray}  \begin{align*}  &Q^{>,1}(\omega) = \frac{ 4e^2}{\hbar^2}\sum_{k\beta,q\gamma,\alpha\mu\nu\tau,\delta\lambda} \int \frac{d\epsilon}{2\pi}[-i\Gamma_{\beta\alpha}]G_{\alpha\delta}^r(\epsilon)\Gamma_{\delta\lambda} G_{\lambda\gamma}^a(\epsilon) [-i\Gamma_{\gamma\tau}]G_{\tau\mu}^r(\omega+\epsilon)\Gamma_{\mu\nu} G_{\nu\beta}^a(\omega+\epsilon)\\  &((1-f_h(\epsilon)+(1-f_e(\epsilon)))(f_e(\omega+\epsilon)+f_h(\omega+\epsilon))(F_{hh}+F_{ee}+F_{eh}+F_{he})  \end{align*}  \begin{eqnarray}  Q^{>,2}(\omega) = \frac{ 4e^2}{\hbar^2}\sum_{k\beta,q\gamma,\alpha\mu\nu\tau} \int \frac{d\epsilon}{2\pi}[\Gamma_{\beta\alpha}]G_{\alpha\gamma}^a(\epsilon) [i\Gamma_{\gamma\tau}]G_{\tau\mu}^r(\omega+\epsilon)\Gamma_{\mu\nu} G_{\nu\beta}^a(\omega+\epsilon) (1-f_e(\epsilon))(f_e(\omega+\epsilon)+f_h(\omega+\epsilon))(F_{eh}+F_{ee})  \end{eqnarray}  \begin{eqnarray}  Q^{>,3}(\omega) = \frac{ 4e^2}{\hbar^2}\sum_{k\beta,q\gamma,\alpha\mu\nu\tau} \int \frac{d\epsilon}{2\pi} [-i\Gamma_{\beta\alpha}]G_{\alpha\delta}^r(\epsilon)\Gamma_{\delta\lambda} G_{\lambda\gamma}^a(\epsilon) \Gamma_{\gamma\tau}G^a_{\tau\beta}(\omega+\epsilon)(F_{he}+F_{ee})  \end{eqnarray}  \begin{eqnarray}  Q^{>,4}(\omega) = \frac{ 4e^2}{\hbar^2}\sum_{k\beta,q\gamma,\alpha\mu\nu\tau } \int \frac{d\epsilon}{2\pi}[\Gamma_{\beta\alpha}]G_{\alpha\gamma}^a(\epsilon) [-i\Gamma_{\gamma\tau}]G_{\tau\beta}^a(\omega+\epsilon)F_{ee}  \end{eqnarray}  We can now express the total contribution for $Q^>$ and $Q^<$ as