Rosa edited untitled.tex  about 8 years ago

Commit id: e306c60d113d0d8aad7b18cb8cfdb5cd49146565

deletions | additions      

       

\end{eqnarray}  We now compute separately the different parts of the previous expression for the ac noise  \begin{eqnarray}  P^{>,1}(\omega)= \frac{e^2}{\hbar^2}\int_{-\infty}^\infty \frac{d\epsilon}{2\pi}\sum_{k,q,p\beta\gamma\alpha\delta} G^r_{\beta \alpha}(\epsilon) (\Sigma_{0,\alpha\delta}^{>}+ (\Sigma_{0,\alpha\delta}^{>,e}+  \Sigma_{0,\alpha\delta}^{>,h}) G^a_{\delta \gamma}(\epsilon)\Sigma_{\gamma\beta}^{<,h}(\omega+\epsilon)\delta_{kq} \end{eqnarray}  \begin{eqnarray}  P^{>,2}(\omega) = \frac{e^2}{\hbar^2} \int_{-\infty}^\infty \frac{d\epsilon}{2\pi} \sum_{k,q,p\beta\gamma\alpha\delta\tau\theta} G^r_{\beta \alpha}(\epsilon) (\Sigma_{0,\alpha\delta}^{>}+ (\Sigma_{0,\alpha\delta}^{>,e}+  \Sigma_{0,\alpha\delta}^{>,h}) G^a_{\delta \gamma}(\epsilon)\Sigma_{\gamma\tau}^{r,h}(\omega+\epsilon) G_{\tau\theta}^r(\omega+\epsilon)\Sigma_{\theta\beta}^{<,h}(\omega+\epsilon) \end{eqnarray}  \begin{eqnarray}  P^{>,3}(\omega) =\frac{e^2}{\hbar^2} \int_{-\infty}^\infty \frac{d\epsilon}{2\pi} \sum_{k,q,p\beta\gamma\alpha\delta\tau\theta} G^r_{\beta \alpha}(\epsilon) (\Sigma_{0,\alpha\delta}^{>}+ (\Sigma_{0,\alpha\delta}^{>,e}+  \Sigma_{0,\alpha\delta}^{>,h}) G^a_{\delta \gamma}(\epsilon) \Sigma_{\gamma\tau}^{r,h}(\omega+\epsilon) G_{\tau\theta}^<(\omega+\epsilon)\Sigma_{\theta\beta}^{a,h}(\omega+\epsilon)  \end{eqnarray}  \begin{eqnarray}  P^{>,4}(\omega) =\frac{e^2}{\hbar^2} \int_{-\infty}^\infty \frac{d\epsilon}{2\pi} \sum_{k,q,p\beta\gamma\alpha\delta\tau\theta} G^r_{\beta \alpha}(\epsilon) (\Sigma_{0,\alpha\delta}^{>}+ (\Sigma_{0,\alpha\delta}^{>,e}+  \Sigma_{0,\alpha\delta}^{>,h}) G^a_{\delta \gamma}(\epsilon)\Sigma_{\gamma\tau}^{<,h}(\omega+\epsilon) G_{\tau\theta}^a(\omega+\epsilon)\Sigma_{\theta\beta}^{a,h}(\omega+\epsilon) \end{eqnarray}  Now we explicitely write down the expressions for the self-energies  \begin{equation} 

\end{eqnarray}  In the particle-hole case we take $\Gamma(\epsilon)=\Gamma(-\epsilon)$. Besides we consider the WBL and take $\Gamma$ as constants, then  \begin{eqnarray}  && P^{>,1}(\omega)= \frac{e^2}{\hbar^2}\int_{-\infty}^\infty \frac{d\epsilon}{2\pi} \sum_{\beta\gamma\alpha\delta} \sum_{\beta\gamma\alpha}  G^r_{\beta \alpha}(\epsilon) \Sigma^>_{0,\alpha\delta}(\epsilon) G^a_{\delta \gamma}(\epsilon)\Sigma^{h,<}_{0,\alpha\delta}(\epsilon+\omega) \\ \nonumber &=& \frac{4e^2}{\hbar^2}\int_{-\infty}^\infty \frac{d\epsilon}{2\pi} \sum_{\beta\gamma\alpha\delta} [G^r_{\beta \alpha}(\epsilon) \Gamma_{\alpha\delta} G^a_{\delta \gamma}(\epsilon) \Gamma_{\alpha\delta}   \\ \nonumber  && [(1-f_{e}(\epsilon))f_{h}(\epsilon+\omega)+(1-f_{h}(\epsilon)) f_{h}(\epsilon+\omega)]  \end{eqnarray}  \begin{eqnarray}  && P^{>,2}(\omega) = \frac{4e^2}{\hbar^2} \int_{-\infty}^\infty \frac{d\epsilon}{2\pi} \sum_{\beta\gamma\alpha\delta} \sum_{\beta\gamma\alpha\delta\tau\theta}  \\ \nonumber && G^r_{\beta \alpha}(\epsilon) \Gamma_{\alpha\delta}(\epsilon) G^a_{\delta \gamma}(\epsilon) [-i\Gamma_{\gamma\gamma}] G^{r}_{\gamma\beta}(\omega+\epsilon) \Gamma_{\beta\beta}[(1-f_{e}(\epsilon))f_{h}(\epsilon+\omega)+(1-f_{h}(\epsilon)) [-i\Gamma_{\gamma\tau}] G^{r}_{\tau\theta}(\omega+\epsilon) \Gamma_{\theta\beta}[(1-f_{e}(\epsilon))f_{h}(\epsilon+\omega)+(1-f_{h}(\epsilon))  f_{h}(\epsilon+\omega)] \end{eqnarray}  \begin{eqnarray}  && P^{>,3}(\omega)= \frac{-2i e^2}{\hbar^2} \int_{-\infty}^\infty \frac{d\epsilon}{2\pi} \sum_{\beta\gamma\alpha\delta} \sum_{\beta\gamma\alpha\delta\tau\theta}  \\ \nonumber && G^r_{\beta \alpha}(\epsilon) \Gamma_{\alpha\delta} G^a_{\delta \gamma}(\epsilon) [-i\Gamma_{\gamma\gamma}] G^{<}_{\gamma\beta}(\omega+\epsilon) [i\Gamma_{\beta\beta}][(1-f_{e}(\epsilon))+(1-f_{h}(\epsilon))] [-i\Gamma_{\gamma\tau}] G^{<}_{\tau\theta}(\omega+\epsilon) [i\Gamma_{\theta\beta}][(1-f_{e}(\epsilon))+(1-f_{h}(\epsilon))]  \end{eqnarray}  We replace $G^{<}_{\gamma\beta}(\omega+\epsilon) = 2i \sum_{\nu\mu} G^{r}_{\gamma\nu}(\omega+\epsilon)\Gamma_{\nu\mu}(f_{e}(\omega+\epsilon)+f_{h}(\omega+\epsilon))G^{a}_{\mu\beta}(\omega+\epsilon)$, then  \begin{eqnarray}