Rosa edited untitled.tex  about 8 years ago

Commit id: bd2a60dc1f8838914674399639081201f7842bfd

deletions | additions      

       

In the particle-hole case we take $\Gamma(\epsilon)=\Gamma(-\epsilon)$. Besides we consider the WBL and take $\Gamma$ as constants, then  \begin{eqnarray}  && S^{>,1}(\omega)= \frac{e^2}{\hbar^2}\int_{-\infty}^\infty \frac{d\epsilon}{2\pi} \sum_{\beta\gamma\alpha\delta} G^r_{\beta \alpha}(\epsilon) \Sigma^>_{0,\alpha\delta}(\epsilon) G^a_{\delta \gamma}(\epsilon)\Sigma^{h,<}_{0,\alpha\delta}(\epsilon+\omega) \\ \nonumber  &=& \frac{4e^2}{\hbar^2}\int_{-\infty}^\infty \frac{d\epsilon}{2\pi} \sum_{\beta\gamma\alpha\delta} [G^r_{\beta \alpha}(\epsilon) \Gamma_{\alpha\delta} G^a_{\delta \gamma}(\epsilon) \Gamma_{\alpha\delta} \\ \nonumber  &&  [(1-f_{e}(\epsilon))f_{h}(\epsilon+\omega)+(1-f_{h}(\epsilon)) f_{h}(\epsilon+\omega)] \end{eqnarray}  \begin{eqnarray}  &&  S^{>,2}(\omega) = \frac{4e^2}{\hbar^2} \int_{-\infty}^\infty \frac{d\epsilon}{2\pi} \sum_{\beta\gamma\alpha\delta} \\ \nonumber  &&  G^r_{\beta \alpha}(\epsilon) \Gamma_{\alpha\delta}(\epsilon) G^a_{\delta \gamma}(\epsilon) [-i\Gamma_{\gamma\gamma}] G^{r}_{\gamma\beta}(\omega+\epsilon) \Gamma_{\beta\beta}[(1-f_{e}(\epsilon))f_{h}(\epsilon+\omega)+(1-f_{h}(\epsilon)) f_{h}(\epsilon+\omega)] \end{eqnarray}  \begin{eqnarray}  &&  S^{>,3}(\omega)= \frac{-2i e^2}{\hbar^2} \int_{-\infty}^\infty \frac{d\epsilon}{2\pi} \sum_{\beta\gamma\alpha\delta} \\ \nonumber  &&  G^r_{\beta \alpha}(\epsilon) \Gamma_{\alpha\delta} G^a_{\delta \gamma}(\epsilon) [-i\Gamma_{\gamma\gamma}] G^{<}_{\gamma\beta}(\omega+\epsilon) [i\Gamma_{\beta\beta}][(1-f_{e}(\epsilon))+(1-f_{h}(\epsilon))] \end{eqnarray}  We replace $G^{<}_{\gamma\beta}(\omega+\epsilon) = 2i \sum_{\nu\mu} G^{r}_{\gamma\nu}(\omega+\epsilon)\Gamma_{\nu\mu}(f_{e}(\omega+\epsilon)+f_{h}(\omega+\epsilon))G^{a}_{\mu\beta}(\omega+\epsilon)$, then  \begin{eqnarray}  S^{>,3}(\omega)= \frac{4 e^2}{\hbar^2} \int_{-\infty}^\infty \frac{d\epsilon}{2\pi} \sum_{\beta\gamma\alpha\delta\nu\mu} G^r_{\beta \alpha}(\epsilon) \Gamma_{\alpha\delta} G^a_{\delta \gamma}(\epsilon) [-i\Gamma_{\gamma\gamma}] G^{r}_{\gamma\nu}(\omega+\epsilon)\Gamma_{\nu\mu} G^{a}_{\mu\beta}(\omega+\epsilon) [i\Gamma_{\beta\beta}][(1-f_{e}(\epsilon))+(1-f_{h}(\epsilon))] [f_{e}(\epsilon+\omega)+f_{h}(\epsilon+\omega)]   \end{eqnarray}  \begin{eqnarray}  S^{>,4}(\omega) &&S^{>,4}(\omega)  = \frac{4e^2}{\hbar^2} \int_{-\infty}^\infty \frac{d\epsilon}{2\pi} \sum_{\beta\gamma\alpha\delta} G^r_{\beta \alpha}(\epsilon) \Gamma_{\alpha\delta} G^a_{\delta \gamma}(\epsilon) \Gamma_{\gamma\gamma} G^{a}_{\gamma\beta}(\omega+\epsilon) [i\Gamma_{\beta\beta}][(1-f_{e}(\epsilon))+(1-f_{h}(\epsilon))] [i\Gamma_{\beta\beta}]\\ \nonumber  &&\times[(1-f_{e}(\epsilon))+(1-f_{h}(\epsilon))]  f_{h}(\epsilon+\omega) \end{eqnarray}  Now we collect $S^{>,2}(\omega)+S^{>,4}(\omega)$  \begin{eqnarray}  S^{>,2}(\omega)+ &&S^{>,2}(\omega)+  S^{>,4}(\omega) = -i\frac{4e^2}{\hbar^2} \int_{-\infty}^\infty \frac{d\epsilon}{2\pi} \sum_{\beta\gamma\alpha\delta} G^r_{\beta \alpha}(\epsilon) \Gamma_{\alpha\delta}(\epsilon) G^a_{\delta \gamma}(\epsilon)\Gamma_{\gamma\gamma} \\ \nonumber  &&  [G^{r}_{\gamma\beta}(\omega+\epsilon)-G^{a}_{\gamma\beta}(\omega+\epsilon)] \Gamma_{\beta\beta}[(1-f_{e}(\epsilon))f_{h}(\epsilon+\omega)+(1-f_{h}(\epsilon)) f_{h}(\epsilon+\omega)] \end{eqnarray}  Now we replace $[G^{r}_{\gamma\beta}(\omega+\epsilon)-G^{a}_{\gamma\beta}(\omega+\epsilon)]= -4iG^r_{\gamma\nu}\Gamma_{\nu\mu}(\omega+\epsilon)G^{a}_{\mu\beta}(\omega+\epsilon)$, then  \begin{eqnarray}  S^{>,2}(\omega)+ &&S^{>,2}(\omega)+  S^{>,4}(\omega) = \frac{-16e^2}{\hbar^2} \int_{-\infty}^\infty \frac{d\epsilon}{2\pi} \sum_{\beta\gamma\alpha\delta\mu\nu} G^r_{\beta \alpha}(\epsilon) \Gamma_{\alpha\delta}(\epsilon) G^a_{\delta \gamma}(\epsilon)\Gamma_{\gamma\gamma}[G^r_{\gamma\nu}(\omega+\epsilon)\Gamma_{\nu\mu}(\omega+\epsilon)G^{a}_{\mu\beta}(\omega+\epsilon)] \Gamma_{\beta\beta}[(1-f_{e}(\epsilon))f_{h}(\epsilon+\omega)+(1-f_{h}(\epsilon)) \Gamma_{\beta\beta}  \\ \nonumber  &&[(1-f_{e}(\epsilon))f_{h}(\epsilon+\omega)+(1-f_{h}(\epsilon))  f_{h}(\epsilon+\omega)] \end{eqnarray}  We now define $F_{\tau\tau'} =f_\tau(\epsilon)(1-f_\tau'(\epsilon+\omega))+f_\tau(\epsilon+\omega)(1-f_\tau'(\epsilon))$ with $\tau=e,h$. Then collecting all the terms for the noise (including the two pieces $S^>$ and $S^<$ we have  \begin{eqnarray}