Rosa edited untitled.tex  about 8 years ago

Commit id: a2dcbdb097e8b775c8d001be1008ff67a8767e85

deletions | additions      

       

\end{eqnarray}  We now define $F_{\tau\tau'} =f_\tau(\epsilon)(1-f_\tau'(\epsilon+\omega))+f_\tau(\epsilon+\omega)(1-f_\tau'(\epsilon))$ with $\tau=e,h$. Then collecting all the terms for the noise (including the two pieces $S^>$ and $S^<$ we have  \begin{eqnarray}  S^{A}(\omega)= \frac{4 e^2}{\hbar^2} \int_{-\infty}^\infty \frac{d\epsilon}{2\pi} \sum_{\beta\gamma\alpha\delta\nu\mu} G^r_{\beta \alpha}(\epsilon) \Gamma_{\alpha\delta} G^a_{\delta \gamma}(\epsilon) [\Gamma_{\gamma\gamma}] G^{r}_{\gamma\nu}(\omega+\epsilon)\Gamma_{\nu\mu} G^{a}_{\mu\beta}(\omega+\epsilon) \Gamma_{\beta\beta}][F_{ee}+F_{hh}+F_{eh}+F_{he}] [\Gamma_{\beta\beta}][F_{ee}+F_{hh}+F_{eh}+F_{he}]  \end{eqnarray}  and  \begin{eqnarray}  S^{B}(\omega)= \frac{16 e^2}{\hbar^2} \int_{-\infty}^\infty \frac{d\epsilon}{2\pi} \sum_{\beta\gamma\alpha\delta\nu\mu} G^r_{\beta \alpha}(\epsilon) \Gamma_{\alpha\delta} G^a_{\delta \gamma}(\epsilon) [\Gamma_{\gamma\gamma}] G^{r}_{\gamma\nu}(\omega+\epsilon)\Gamma_{\nu\mu} G^{a}_{\mu\beta}(\omega+\epsilon) \Gamma_{\beta\beta}][F_{eh}+F_{hh}] [\Gamma_{\beta\beta}][F_{eh}+F_{hh}]  \end{eqnarray} and   \begin{eqnarray}  && S^{>,1}(\omega)= \frac{4e^2}{\hbar^2}\int_{-\infty}^\infty \frac{d\epsilon}{2\pi} \sum_{\beta\gamma\alpha\delta} [G^r_{\beta \alpha}(\epsilon) \Gamma_{\alpha\delta} G^a_{\delta \gamma}(\epsilon) \Gamma_{\alpha\delta} [F_{eh}+F_{hh}]  \end{eqnarray}  with the total noise as $S=S^A+S^B+S^C$  \begin{eqnarray}