Rosa edited untitled.tex  about 8 years ago

Commit id: 880df5ccba51c447824d9d431b0d8fdf974fd216

deletions | additions      

       

S^{>,1}(\omega)= \frac{e^2}{\hbar^2}\int_{-\infty}^\infty \frac{d\epsilon}{2\pi} \sum_{k,q,p\beta\gamma\alpha\delta} G^r_{\beta \alpha}(\epsilon) [V^*_{\alpha p} g^>_{p}(\epsilon)V_{ \delta p} + V_{\alpha p} g^{h,>}_{p}(\epsilon) V^*_{\delta p}]G^a_{\delta \gamma}(\epsilon)[V_{\beta k} g_{q}^{h,<}(\omega+\epsilon)V^*_{\gamma q}\delta_{kq}  \end{eqnarray}  \begin{eqnarray}  S^{>,2}(\omega) &&S^{>,2}(\omega)  = \frac{e^2}{\hbar^2} \int_{-\infty}^\infty \frac{d\epsilon}{2\pi} \sum_{k,q,p\beta\gamma\alpha\delta} G^r_{\beta \alpha}(\epsilon) [V_{\alpha p}^* g^>_{p}(\epsilon)V_{\delta p} + V_{\alpha p} g^{h,>}_{p}(\epsilon) V_{\delta p}^*]G^a_{\delta \gamma}(\epsilon) \\ \nonumber  &&  [V_{\gamma q}^* g_{q}^{h,r}(\omega+\epsilon) V_{\gamma q} G^{<}_{\gamma\beta}(\omega+\epsilon) V_{\beta k} g_{k}^{h,a}(\omega+\epsilon) V_{\beta k}^*] \end{eqnarray}  \begin{eqnarray}  S^{>,3}(\omega)= &&S^{>,3}(\omega)=  \frac{e^2}{\hbar^2} \int_{-\infty}^\infty \sum_{k,q,p\beta\gamma\alpha\delta} G^r_{\beta \alpha}(\epsilon) [V^*_{\alpha p} g^>_{p}(\epsilon)V_{ \delta p} + V_{\alpha p} g^{h,>}_{p}(\epsilon) V^*_{\delta p}]G^a_{\delta \gamma}(\epsilon) \\ \nonumber   &&  [V_{\gamma q}^* g_{k}^{h,r}(\omega+\epsilon) V^*_{\gamma q} G^{<}_{\gamma\beta}(\omega+\epsilon)V_{\gamma q} g_{q}^{h,a}(\omega+\epsilon) V^*_{\gamma q}] \end{eqnarray}  \begin{eqnarray}  S^{>,4}(\omega)= &&S^{>,4}(\omega)=  \frac{e^2}{\hbar^2} \int_{-\infty}^\infty \frac{d\epsilon}{2\pi} \sum_{k,q,p\beta\gamma\alpha\delta} G^r_{\beta \alpha}(\epsilon)[V^*_{\alpha p} g^>_{p}(\epsilon)V_{ \delta p } + V_{\alpha p} g^{h,>}_{p}(\epsilon) V^*_{\delta p}] G^a_{\delta \gamma}(\epsilon)[V_{\beta \gamma}(\epsilon)\\ \nonumber   && [V_{\beta  k} g_{k}^{h,<}(\omega+\epsilon) V_{\gamma k} G^{a}_{\gamma\beta}(\omega+\epsilon)V_{\beta q}^* g_{q}^{h,a}(\omega+\epsilon)V^*_{\gamma q}] \end{eqnarray}  They can be reformulated in terms of self-energies as  \begin{eqnarray} 

\end{eqnarray}  We replace $G^{<}_{\gamma\beta}(\omega+\epsilon) = 2i \sum_{\nu\mu} G^{r}_{\gamma\nu}(\omega+\epsilon)\Gamma_{\nu\mu}(f_{e}(\omega+\epsilon)+f_{h}(\omega+\epsilon))G^{a}_{\mu\beta}(\omega+\epsilon)$, then  \begin{eqnarray}  &&  S^{>,3}(\omega)= \frac{4 e^2}{\hbar^2} \int_{-\infty}^\infty \frac{d\epsilon}{2\pi} \sum_{\beta\gamma\alpha\delta\nu\mu} G^r_{\beta \alpha}(\epsilon) \Gamma_{\alpha\delta} G^a_{\delta \gamma}(\epsilon) [-i\Gamma_{\gamma\gamma}] G^{r}_{\gamma\nu}(\omega+\epsilon)\Gamma_{\nu\mu} G^{a}_{\mu\beta}(\omega+\epsilon) [i\Gamma_{\beta\beta}][(1-f_{e}(\epsilon))+(1-f_{h}(\epsilon))] [i\Gamma_{\beta\beta}]\\ \nonumber && [(1-f_{e}(\epsilon))+(1-f_{h}(\epsilon))]  [f_{e}(\epsilon+\omega)+f_{h}(\epsilon+\omega)] \end{eqnarray}  \begin{eqnarray}  &&S^{>,4}(\omega) = \frac{4e^2}{\hbar^2} \int_{-\infty}^\infty \frac{d\epsilon}{2\pi} \sum_{\beta\gamma\alpha\delta} G^r_{\beta \alpha}(\epsilon) \Gamma_{\alpha\delta} G^a_{\delta \gamma}(\epsilon) \Gamma_{\gamma\gamma} G^{a}_{\gamma\beta}(\omega+\epsilon) [i\Gamma_{\beta\beta}]\\ \nonumber