Rosa edited untitled.tex  about 8 years ago

Commit id: 7e27bc241cdaafae27ac6da7b237f96d633b6934

deletions | additions      

       

\begin{equation}  G_{kq}^{h,t}(t,t') = G_{kq}^{h,t}(t,t')\delta_{kq} + \sum_{\beta\gamma}\int \frac{-dt_1}{\hbar}\frac{-dt_2}{\hbar} g_{k}^{h,t}(t,t_1) V_{\gamma k} G^{t}_{\gamma\beta}(t_1,t_2)V_{\beta q}^* g_{q}^{h,t}(t_2,t')  \end{equation}  The rest of equations for the Green functions that appear in the noise expression are already in J. S note. Now we employ the following definition for the Fourier transform  \begin{equation}  F(t-t')=\frac{1}{2\pi}\int_{\infty}^\infty} d\omega e^{-i\omega t} F(\omega)\,,  \end{equation}  Then, the ac spectral noise becomes  \begin{eqnarray}  &&S>(\omega)=\frac{e^2}{\hbar^2}\sum_{k\beta,q\gamma} V_{\beta k} V_{\gamma q}^{*}\int_{\infty}^\infty  d\omega e^{-i\omega (t-t')} \int d\epsilon_1 e^{-i\epsilon (t-t')} \int d\epsilon_2 e^{i\epsilon (t-t')}\Biggr\{  [G^t_{\beta\gamma}(\epsilon_1) G^{h,t}_{qk}(\epsilon_2) - G^{t}_{\beta q}(\epsilon_1)G^{h,t}_{\gamma k}(\epsilon_2]\\ \nonumber  && + V_{\beta k}^{*}V_{\gamma q} [G^{h,t}_{kq}(\epsilon_1) G{t}_{\gamma\beta}(\epsilon_2) - G^{h,t}_{k\gamma}(\epsilon_1)G^{t}_{q \beta}(\epsilon_2)]\Biggr\}\,,  \end{eqnarray}