Rosa edited untitled.tex  about 8 years ago

Commit id: 78056dca4affa2c42c2cd764321ad1bbf4be223a

deletions | additions      

       

Then, we have  \begin{align*}  &N^>(\omega)=(e^2/h)\sum_{k\beta,q\gamma, \nu\mu} \int \frac{d\epsilon}{2\pi} V_{\beta k} V^*_{\gamma q}   [G_{\beta\nu}^r(\epsilon) V_{\nu q} g^{>}_{q}(\epsilon)+ G_{\beta\nu}^>(+\epsilon) V_{\nu q} g^{a}_{q}(\omega+\epsilon)] g^{a}_{q}(\epsilon)]  \\ \nonumber  &[G_{\gamma\mu}^r(\omega+\epsilon) V^*_{\mu k} g^{<,h}_{k}(\omega+\epsilon)+ G_{\gamma\mu}^<(\omega+\epsilon) V^*_{\mu k} g^{a,h}_{k}(\omega+\epsilon)]  \end{align*} 

&N^>(\omega)=(4e^2/h)\sum_{k\beta,q\gamma, \nu\mu} \int \frac{d\epsilon}{2\pi} \times \Biggr\{  [G_{\beta\nu}^r(\epsilon) \Gamma_{\nu\gamma} G_{\gamma\mu}^r(\omega+\epsilon) \Gamma_{\mu\beta} (1-f_e(\epsilon) f_{h}(\omega+\epsilon)] \\   &+\sum_{\lambda\delta}[G_{\beta\nu}^r(\epsilon) \Gamma_{\nu\gamma} G_{\gamma\lambda}^r(\omega+\epsilon) \Gamma_{\lambda\delta}G^a_{\delta\mu}(\omega+\epsilon)[i\Gamma_{\mu\beta}](1-f_e(\epsilon)(f_{h}(\epsilon+\omega)+f_e(\omega+\epsilon))] \\   &+\sum_{\lambda\delta} G_{\beta\lambda}^r(\epsilon)\Gamma_{\lambda\delta} G_{\delta\nu}^a(\epsilon)[i\Gamma_{\nu\gamma}] G_{\gamma\mu}^r(\omega+\epsilon)(1-f_{e}(\omega+\epsilon)+1-f_{h}(\omega+\epsilon))f_h(\epsilon)\\ G_{\gamma\mu}^r(\omega+\epsilon)(1-f_{e}(\epsilon)+1-f_{h}(\epsilon))f_h(\omega+\epsilon)\\  &+\sum_{\lambda\delta\theta\tau}[G_{\beta\lambda}^r(\epsilon)\Gamma_{\lambda\delta} G_{\delta\nu}^a(\epsilon)[i\Gamma_{\nu\gamma}] G_{\gamma\theta}^r(\omega+\epsilon)\Gamma_{\theta\tau} G_{\tau\mu}^a(\omega+\epsilon)[i\Gamma_{\mu\beta}](1-f_{e}(\epsilon)+1-f_{h}(\epsilon))(f_{e}(\omega+\epsilon+)+f_{h}(\epsilon+\omega))] \Biggr\}  \end{align*}  Finally, to obtain $N<(t,t)$ we just change $(1-f)\rightarrow f$, and $f\rightarrow (1-f)$.   \begin{align*}  &N(\omega)=(4e^2/h)\sum_{k\beta,q\gamma, \nu\mu} \int \frac{d\epsilon}{2\pi} \times \Biggr\{  [G_{\beta\nu}^r(\epsilon) \Gamma_{\nu\gamma} G_{\gamma\mu}^r(\epsilon+\omega) \Gamma_{\mu\beta} F_{ee} F_{eh}  \\ &+\sum_{\lambda\delta}[G_{\beta\nu}^r(\epsilon) \Gamma_{\nu\gamma} G_{\gamma\lambda}^r(\omega+\epsilon) \Gamma_{\lambda\delta}G^a_{\delta\mu}(\epsilon+\omega)[i\Gamma_{\mu\beta}](F_{eh}+F_{ee}) \\   &+\sum_{\lambda\delta} G_{\beta\lambda}^r(\epsilon)\Gamma_{\lambda\delta} G_{\delta\nu}^a(\epsilon)[i\Gamma_{\nu\gamma}] G_{\gamma\mu}^r(\omega+\epsilon)(F_{eh}+F_{hh})\\   &+\sum_{\lambda\delta\theta\tau}[G_{\beta\lambda}^r(\epsilon)\Gamma_{\lambda\delta} G_{\delta\nu}^a(\epsilon)[i\Gamma_{\nu\gamma}] G_{\gamma\theta}^r(\omega+\epsilon)\Gamma_{\theta\tau} G_{\tau\mu}^a(\omega+\epsilon)[i\Gamma_{\mu\beta}](F_{ee}+F_{hh}+(F_{eh}+F_{he})) \Biggr\}  \end{align*}  The next term is $M(t,t') = M^>(t,t´) + M^<(t,t´)$ with  \begin{eqnarray}  M^>(t,t´)=\frac{e^2}{\hbar^2}\sum_{k\beta,q\gamma} V_{\beta k}^{*}V_{\gamma q} [G^{h,>}_{kq}(t,t') [G^{>,h}_{kq}(t,t')  G^{<}_{\gamma\beta}(t',t) \end{eqnarray}  Then,  \begin{eqnarray}  M^>(\omega)=\frac{e^2}{\hbar^2}\sum_{k\beta,q\gamma} V_{\beta k}^{*}V_{\gamma q}\int \frac{d\epsilon}{2\pi} [G^{h,>}_{kq}(\epsilon) [G^{>,h}_{kq}(\epsilon)  G^{<}_{\gamma\beta}(\omega+\epsilon) \end{eqnarray}  We replace now  \begin{align*}  &G_{kq}^{h,>}(\epsilon) &G_{kq}^{>,h}(\epsilon)  = g_{q}^{h,>}(\epsilon)+ g_{q}^{h,>}(\epsilon)\delta_{kq}+  \sum_{\alpha\delta} [g_{k}^{h,r}(\epsilon) [g_{k}^{r,h}(\epsilon)  V_{\alpha k} G^{r}_{\alpha\delta}(\epsilon)V_{\delta q}^* g_{q}^{h,>}(\epsilon) +g_{k}^{h,r}(\epsilon) +g_{k}^{r,h}(\epsilon)  V_{\alpha k} G^{>}_{\alpha\delta}(\epsilon)V_{\delta q}^* g_{q}^{h,a}(\epsilon)] g_{q}^{a,h}(\epsilon)]  \\  \nonumber  &+g_{k}^{h,>}(\epsilon) V_{\gamma &+g_{k}^{>,h}(\epsilon) V_{\alpha  k} G^{a}_{\gamma\beta}(\epsilon)V_{\beta G^{a}_{\alpha\delta}(\epsilon)V_{\delta  q}^* g_{q}^{h,a}(\epsilon) g_{q}^{a,h}(\epsilon)  ]\,, \end{align*}  Then we get  \begin{align*}  &M^>(\omega)=\frac{2 i e^2}{\hbar^2}\sum_{k\beta,q\gamma,\nu\mu} \int \frac{d\epsilon}{2\pi}\  V_{\beta k}^{*} g_{q}^{h,>}(\epsilon) V_{\alpha k} G^{r}_{\gamma\nu}(\omega+\epsilon) \Gamma_{\nu\mu} G^{a}_{\mu\beta}(\omega+\epsilon)(f_e(\omega+\epsilon)+f_h(\omega+\epsilon)) \\  &+\frac{2 i e^2}{\hbar^2}\sum_{k\beta,q\gamma,\alpha\delta,\nu\mu} \int \frac{d\epsilon}{2\pi}\Biggr\{ V_{\beta k}^{*} g_{q}^{h,>}(\epsilon) V_{\alpha k} g_{q}^{>,h}(\epsilon) V_{\gamma q}  G^{r}_{\gamma\nu}(\omega+\epsilon) \Gamma_{\nu\mu} G^{a}_{\mu\beta}(\omega+\epsilon)(f_e(\omega+\epsilon)+f_h(\omega+\epsilon)) \\ & + \frac{2 i e^2}{\hbar^2}\sum_{k\beta,q\gamma,\alpha\delta\nu\mu}\int \frac{d\epsilon}{2\pi} \Biggr \{  V_{\beta k}^{*} g_{k}^{h,r}(\epsilon) g_{k}^{r,h}(\epsilon)  V_{\alpha k} G^{r}_{\alpha\delta}(\epsilon) V_{\delta q}^* g_{q}^{h,>}(\epsilon) g_{q}^{>,h}(\epsilon)  V_{\gamma q} G^{r}_{\gamma\nu}(\omega+\epsilon) \Gamma_{\nu\mu} G^{a}_{\mu\beta}(\omega+\epsilon)(f_e(\omega+\epsilon)+f_h(\omega+\epsilon)) \\  &+V_{\beta k}^{*} g_{k}^{h,r}(\epsilon) g_{k}^{r,h}(\epsilon)  V_{\alpha k} G^{>}_{\alpha\delta}(\epsilon) V_{\delta q}^* g_{q}^{h,<}(\epsilon) g_{q}^{<,h}(\epsilon)  V_{\gamma q} G^{r}_{\gamma\nu}(\omega+\epsilon) \Gamma_{\nu\mu} G^{a}_{\mu\beta}(\omega+\epsilon)(f_e(\omega+\epsilon)+f_h(\omega+\epsilon)) \\   &+V_{\beta k}^{*} g_{k}^{h,>}(\epsilon) g_{k}^{>,h}(\epsilon)  V_{\alpha k} G^{a}_{\alpha\delta}(\epsilon) V_{\delta q}^* g_{q}^{h,a}(\epsilon) g_{q}^{a,h}(\epsilon)  V_{\gamma q} G^{r}_{\gamma\nu}(\omega+\epsilon) \Gamma_{\nu\mu} G^{a}_{\mu\beta}(\omega+\epsilon) (f_e(\omega+\epsilon)+f_h(\omega+\epsilon))\Biggr\} \end{align*}  We now use the explicit expressions for the self-energies  \begin{align*}  &M^>(\omega)=\frac{2 i e^2}{\hbar^2}\sum_{k\beta,q\gamma,\nu\mu} \int \frac{d\epsilon}{2\pi}\  V_{\beta k}^{*} g_{q}^{h,>}(\epsilon) V_{\gamma k} q}  G^{r}_{\gamma\nu}(\omega+\epsilon) \Gamma_{\nu\mu} G^{a}_{\mu\beta}(\omega+\epsilon)(f_e(\omega+\epsilon)+f_h(\omega+\epsilon)) \\ &\frac{2i &+ \frac{2i  e^2}{\hbar^2}\sum_{k\beta,q\gamma,\alpha\delta\nu\mu} \int \frac{d\epsilon}{2\pi}\Biggr\{ \\  &[\Sigma^{r,h}_{0,\beta\alpha}(\epsilon) G^{r}_{\alpha\delta}(\epsilon) \Sigma^{h,>}_{0,\delta\gamma}(\omega+\epsilon) \Sigma^{h,>}_{0,\delta\gamma}(\epsilon)  G^{r}_{\gamma\nu}(\omega+\epsilon)\Gamma_{\nu\mu}G^{a}_{\mu\beta}(\omega+\epsilon)](f_{e}(\omega+\epsilon)+f_h(\omega+\epsilon)) + \\   \nonumber  &[\Sigma^{r,h}_{0,\beta\alpha}(\epsilon) G^{>}_{\alpha\delta}(\epsilon) \Sigma^{h,a}_{0,\delta\gamma} (\omega+\epsilon)G^{r}_{\gamma\nu}(\omega+\epsilon)\Gamma_{\nu\mu}G^{a}_{\mu\beta}(\omega+\epsilon)](f_{e}(\omega+\epsilon)+f_h(\omega+\epsilon))+ (\epsilon)G^{r}_{\gamma\nu}(\omega+\epsilon)\Gamma_{\nu\mu}G^{a}_{\mu\beta}(\omega+\epsilon)](f_{e}(\omega+\epsilon)+f_h(\omega+\epsilon))+  \\   \nonumber  & [\Sigma^{>,h}_{0,\beta\alpha}(\epsilon) G^{a}_{\alpha\delta}(\epsilon) \Sigma^{h,a}_{0,\delta\gamma}(\omega+\epsilon) \Sigma^{h,a}_{0,\delta\gamma}(\epsilon)  G^{r}_{\gamma\nu}(\omega+\epsilon)\Gamma_{\nu\mu}G^{a}_{\mu\beta}(\omega+\epsilon)](f_{e}(\omega+\epsilon)+f_h(\omega+\epsilon)) \Biggr\} \end{align*}  Then we obtain,   \begin{align*}  &M^>(\omega)=\frac{4 e^2}{\hbar^2}\sum_{k\beta,q\gamma,\alpha\delta\nu\mu} \int \frac{d\epsilon}{2\pi}\Biggr\{ \Gamma_{\beta\gamma} G^{r}_{\gamma\nu}(\omega+\epsilon)\Gamma_{\nu\mu}G^{a}_{\mu\beta}(\omega+\epsilon)](f_{e}(\omega+\epsilon)+f_h(\omega+\epsilon)) (1-f_{e}(\epsilon)] (1-f_{h}(\epsilon)]  \\ & [-i\Gamma_{\beta\alpha}] G^{r}_{\alpha\delta}(\epsilon) \Gamma_{\delta\gamma} G^{r}_{\gamma\nu}(\omega+\epsilon)\Gamma_{\nu\mu}G^{a}_{\mu\beta}(\omega+\epsilon)](f_{e}(\omega+\epsilon)+f_h(\omega+\epsilon))(1-f_h(\epsilon)) +   \\   &[\sum_{\theta\tau} [-i\Gamma_{\beta\alpha}] G^{r}_{\alpha\theta}(\epsilon)\Gamma_{\theta\tau}G^{a}_{\tau\delta}(\epsilon) [i\Gamma_{\delta\gamma}] G^{r}_{\gamma\nu}(\omega+\epsilon)\Gamma_{\nu\mu}G ^{a}_{\mu\beta}(\omega+\epsilon)] 

\end{align*}  Again, the "lesser" term for $M(t,t')$ is obtained by exchanging $1-f$ by $f$ and viceversa. The whole contribution for $M(t,t')$ becomes  \begin{align*}  &M(\omega)=\frac{4 e^2}{\hbar^2}\sum_{k\beta,q\gamma,\alpha\delta\nu\mu} \int \frac{d\epsilon}{2\pi}\Biggr\{ \Gamma_{\beta\gamma} G^{r}_{\gamma\nu}(\omega+\epsilon)\Gamma_{\nu\mu}G^{a}_{\mu\beta}(\omega+\epsilon)](F_{ee}+F_{eh})] G^{r}_{\gamma\nu}(\omega+\epsilon)\Gamma_{\nu\mu}G^{a}_{\mu\beta}(\omega+\epsilon)](F_{hh}+F_{he})]  \\ & [-i\Gamma_{\beta\alpha}] G^{r}_{\alpha\delta}(\epsilon) \Gamma_{\delta\gamma} G^{r}_{\gamma\nu}(\omega+\epsilon)\Gamma_{\nu\mu}G^{a}_{\mu\beta}(\omega+\epsilon)](F_{eh}+F_{hh}) G^{r}_{\gamma\nu}(\omega+\epsilon)\Gamma_{\nu\mu}G^{a}_{\mu\beta}(\omega+\epsilon)](F_{hh}+F_{he})  + \\   &[\sum_{\theta\tau} [-i\Gamma_{\beta\alpha}] G^{r}_{\alpha\theta}(\epsilon)\Gamma_{\theta\tau}G^{a}_{\tau\delta}(\epsilon) [i\Gamma_{\delta\gamma}] G^{r}_{\gamma\nu}(\omega+\epsilon)\Gamma_{\nu\mu}G ^{a}_{\mu\beta}(\omega+\epsilon)(F_{ee}+F_{hh})+(F_{eh}+F_{he})]  \\  & + [\Gamma_{\beta\alpha}(\epsilon) G^{a}_{\alpha\delta}(\epsilon) [i\Gamma_{\delta\gamma}] G^{r}_{\gamma\nu}(\omega+\epsilon)\Gamma_{\nu\mu}G ^{a}_{\mu\beta}(\omega+\epsilon)] (F_{eh}+F_{ee}) (F_{he}+F_{hh})  \Biggr\} \end{align*}  The last term that we need to compute is $Q>(t,t')+Q<(t,t')= $Q^>(t,t')+Q^<(t,t')=  G^{h,>}_{k\gamma}(t,t')G^{<}_{q \beta}(t',t)+ G^{h,<}_{k\gamma}(t,t')G^{>}_{q \beta}(t',t)$. We only calculate $Q^>(t,t')$. For such calculation we employ \begin{eqnarray}  G^{h,>}_{k\gamma}(\epsilon) = \sum_\alpha [g^{r,h}_{k}(\epsilon) V_{\alpha k} G_{\alpha\gamma}^>(\epsilon)+g^{>,h}_{k}(\epsilon) V_{\alpha k} G_{\alpha\gamma}^a(\epsilon)]  \end{eqnarray} 

\end{eqnarray}  Then  \begin{align*}  &Q^>(\omega)\frac{ e^2}{\hbar^2}\sum_{k\beta,q\gamma,\alpha} e^2}{\hbar^2}\sum_{k\beta,q\gamma,\delta}  \int \frac{d\epsilon}{2\pi}\\ &V_{\beta k}^* &V_{k\beta}^*\  V_{\gamma q}[g^{r,h}_{k}(\epsilon) V_{\alpha k} G_{\alpha\gamma}^>(\epsilon)+g^{>,h}_{k}(\epsilon) V_{\alpha G_{\alpha\gamma}^>(\epsilon)+V_{k\beta}^*g^{>,h}_{k}(\epsilon) V_{\delta  k} G_{\alpha\gamma}^a(\epsilon)] G_{\delta\gamma}^a(\epsilon)]  [ V_{\gamma q} g^{r}_{q}(\omega+\epsilon) V^*_{\alpha V^*_{\delta  q} G_{\alpha\beta}^<(\omega+\epsilon)+ G_{\delta\beta}^<(\omega+\epsilon)+  V_{\gamma q} g^{<}_{q}(\epsilon) V^*_{\alpha V^*_{\delta  q} G_{\alpha\beta}^a(\omega+\epsilon) G_{\delta\beta}^a(\omega+\epsilon)  ] \end{align*}  Then we have  \begin{equation}  Q^>(\omega) = \frac{ e^2}{\hbar^2}\sum_{k\beta,q\gamma,\alpha} e^2}{\hbar^2}\sum_{k\beta,q\gamma,\delta}  \int \frac{d\epsilon}{2\pi}[\Sigma_{0,\beta\alpha}^r (\epsilon)G_{\alpha\gamma}^>(\epsilon)+ \Sigma_{0,\beta\alpha}^> (\epsilon) G_{\alpha\gamma}^a(\epsilon)] [\Sigma^r_{0,\gamma \alpha}(\omega+\epsilon) G_{\alpha\beta}^<(\omega+\epsilon)+ \delta}(\omega+\epsilon) G_{\delta\beta}^<(\omega+\epsilon)+  \Sigma^<_{0,\gamma \alpha}(\omega+\epsilon)G_{\alpha\beta}^a(\omega+\epsilon)] \delta}(\omega+\epsilon)G_{\delta\beta}^a(\omega+\epsilon)]  \end{equation}  We can split $Q^>(\omega)$ in four contributions  \begin{align*} 

\end{align*}  \begin{eqnarray}  Q^{>,2}(\omega) = \frac{ 4e^2}{\hbar^2}\sum_{k\beta,q\gamma,\alpha\mu\nu\tau} \int \frac{d\epsilon}{2\pi}[\Gamma_{\beta\alpha}]G_{\alpha\gamma}^a(\epsilon) [i\Gamma_{\gamma\tau}]G_{\tau\mu}^r(\omega+\epsilon)\Gamma_{\mu\nu} [-i\Gamma_{\gamma\tau}]G_{\tau\mu}^r(\omega+\epsilon)\Gamma_{\mu\nu}  G_{\nu\beta}^a(\omega+\epsilon) (1-f_e(\epsilon))(f_e(\omega+\epsilon)+f_h(\omega+\epsilon)) (1-f_h(\epsilon))(f_e(\omega+\epsilon)+f_h(\omega+\epsilon))  \end{eqnarray}  \begin{eqnarray} 

\end{eqnarray}  \begin{eqnarray}  Q^{>,4}(\omega) = \frac{ 4e^2}{\hbar^2}\sum_{k\beta,q\gamma,\alpha\mu\nu\tau } \int \frac{d\epsilon}{2\pi}[\Gamma_{\beta\alpha}]G_{\alpha\gamma}^a(\epsilon) [-i\Gamma_{\gamma\tau}]G_{\tau\beta}^a(\omega+\epsilon)f_e(\omega+\epsilon)(1-f_e(\epsilon)) [\Gamma_{\gamma\tau}]G_{\tau\beta}^a(\omega+\epsilon)f_e(\omega+\epsilon)(1-f_h(\epsilon))  \end{eqnarray} 

\end{align*}  \begin{eqnarray}  Q^{>,2}(\omega) = \frac{ 4e^2}{\hbar^2}\sum_{k\beta,q\gamma,\alpha\mu\nu\tau} \int \frac{d\epsilon}{2\pi}[\Gamma_{\beta\alpha}]G_{\alpha\gamma}^a(\epsilon) [i\Gamma_{\gamma\tau}]G_{\tau\mu}^r(\omega+\epsilon)\Gamma_{\mu\nu} G_{\nu\beta}^a(\omega+\epsilon)(F_{eh}+F_{ee}) G_{\nu\beta}^a(\omega+\epsilon)(F_{he}+F_{hh})  \end{eqnarray}  \begin{eqnarray} 

\end{eqnarray}  \begin{eqnarray}  Q^{>,4}(\omega) = \frac{ 4e^2}{\hbar^2}\sum_{k\beta,q\gamma,\alpha\mu\nu\tau } \int \frac{d\epsilon}{2\pi}[\Gamma_{\beta\alpha}]G_{\alpha\gamma}^a(\epsilon) [-i\Gamma_{\gamma\tau}]G_{\tau\beta}^a(\omega+\epsilon)F_{ee} [-i\Gamma_{\gamma\tau}]G_{\tau\beta}^a(\omega+\epsilon)F_{he}  \end{eqnarray}  We can now express the total contribution for $Q^>$ and $Q^<$ as