Rosa edited untitled.tex  about 8 years ago

Commit id: 6680d6218ed9f267d66bbfa28e11f9ea0b138165

deletions | additions      

       

\begin{align*}  &N^>(\omega)=(e^2/h)\sum_{k\beta,q\gamma, \nu\mu} \int \frac{d\epsilon}{2\pi}   [G_{\beta\nu}^r(\epsilon) V_{\nu q} g^{>}_{q}(\epsilon) V^*_{\gamma q} G_{\gamma\mu}^r(\omega+\epsilon) V^*_{\mu k} g^{<,h}_{k}(\omega+\epsilon) V_{\beta k}][G_{\beta\nu}^r(\epsilon) k}]\\  &[G_{\beta\nu}^r(\epsilon)  V_{\nu q} g^{>}_{q}(\epsilon) V^*_{\gamma q} G_{\gamma\mu}^<(\omega+\epsilon) V^*_{\mu k} g^{a,h}_{k}(\omega+\epsilon) V_{\beta k}] \\   &[G_{\beta\nu}^>(\epsilon) V_{\nu q} g^{a}_{q}(\epsilon) V^*_{\gamma q} G_{\gamma\mu}^r(\omega+\epsilon) V^*_{\mu k} g^{<,h}_{k}(\omega+\epsilon) V_{\beta k}][G_{\beta\nu}^>(\epsilon) k}]\\  &[G_{\beta\nu}^>(\epsilon)  V_{\nu q} g^{a}_{q}(\epsilon) V^*_{\gamma q} G_{\gamma\mu}^<(\omega+\epsilon) V^*_{\mu k} g^{a,h}_{k}(\omega+\epsilon) V_{\beta k}] \end{align*}  Inserting the expressions for the self-energies we get  \begin{align*} 

&+g_{k}^{h,>}(\epsilon) V_{\gamma k} G^{a}_{\gamma\beta}(\epsilon)V_{\beta q}^* g_{q}^{h,a}(\epsilon) ]\,,  \end{align*}  Then we get  \begin{eqnarray}  &&M^>(\omega)=\frac{2 \begin{align*}  &M^>(\omega)=\frac{2  i e^2}{\hbar^2}\sum_{k\beta,q\gamma,\alpha\delta,\nu\mu} \int \frac{d\epsilon}{2\pi}\Biggr\{ V_{\beta k}^{*} g_{k}^{h,r}(\epsilon) V_{\alpha k} G^{r}_{\alpha\delta}(\epsilon) V_{\delta q}^* g_{q}^{h,>}(\epsilon) V_{\gamma q} G^{r}_{\gamma\nu}(\omega+\epsilon) \Gamma_{\nu\mu} G^{a}_{\gamma\nu}(\omega+\epsilon)(f_e(\omega+\epsilon)+f_h(\omega+\epsilon))+ G^{a}_{\gamma\nu}(\omega+\epsilon)(f_e(\omega+\epsilon)+f_h(\omega+\epsilon))  \\ \nonumber  &&  V_{\beta &+{\beta  k}^{*} g_{k}^{h,r}(\epsilon) V_{\alpha k} G^{>}_{\alpha\delta}(\epsilon) V_{\delta q}^* g_{q}^{h,<}(\epsilon) V_{\gamma q} G^{r}_{\gamma\nu}(\omega+\epsilon) \Gamma_{\nu\mu} G^{a}_{\gamma\nu}(\omega+\epsilon)(f_e(\omega+\epsilon)+f_h(\omega+\epsilon))\\ \nonumber  &&  V_{\beta G^{a}_{\gamma\nu}(\omega+\epsilon)(f_e(\omega+\epsilon)+f_h(\omega+\epsilon))  \\   &+V_{\beta  k}^{*} g_{k}^{h,>}(\epsilon) V_{\alpha k} G^{a}_{\alpha\delta}(\epsilon) V_{\delta q}^* g_{q}^{h,a}(\epsilon) V_{\gamma q} G^{r}_{\gamma\nu}(\epsilon) \Gamma_{\nu\mu} G^{a}_{\gamma\nu}(\omega+\epsilon) (f_e(\omega+\epsilon)+f_h(\epsilon))\Biggr\} \end{eqnarray} \end{align*}  We now use the explicit expressions for the self-energies  \begin{eqnarray}  &&M^>(\omega)=\frac{2i e^2}{\hbar^2}\sum_{k\beta,q\gamma,\alpha\delta\nu\mu} \int \frac{d\epsilon}{2\pi}\Biggr\{ [\Sigma^{r,h}_{0,\beta\alpha}(\epsilon) G^{r}_{\alpha\delta}(\epsilon) \Sigma^{h,>}_{0,\delta\gamma} G^{r}_{\gamma\nu}(\omega+\epsilon)\Gamma_{\nu\mu}](f_{e}(\omega+\epsilon)+f_h(\omega+\epsilon)) +