Rosa edited untitled.tex  about 8 years ago

Commit id: 637fb17c47732e36cfba4491ecbb8ba08bc7a435

deletions | additions      

       

\end{eqnarray}  We replace $G^{<}_{\gamma\beta}(\omega+\epsilon) = 2i \sum_{\nu\mu} G^{r}_{\gamma\nu}(\omega+\epsilon)\Gamma_{\nu\mu}(f_{e}(\omega+\epsilon)+f_{h}(\omega+\epsilon))G^{a}_{\mu\beta}(\omega+\epsilon)$, then  \begin{eqnarray}  && P^{>,3}(\omega)= \frac{4 e^2}{\hbar^2} \int_{-\infty}^\infty \frac{d\epsilon}{2\pi} \sum_{\beta\gamma\alpha\delta\nu\mu} \sum_{\beta\gamma\alpha\delta\tau\theta\nu\mu}  G^r_{\beta \alpha}(\epsilon) \Gamma_{\alpha\delta} G^a_{\delta \gamma}(\epsilon) [-i\Gamma_{\gamma\gamma}] G^{r}_{\gamma\nu}(\omega+\epsilon)\Gamma_{\nu\mu} G^{a}_{\mu\beta}(\omega+\epsilon) [i\Gamma_{\beta\beta}]\\ [-i\Gamma_{\gamma\tau}] G^{r}_{\tau\nu}(\omega+\epsilon)\Gamma_{\nu\mu} G^{a}_{\mu\theta}(\omega+\epsilon) [i\Gamma_{\theta\beta}]\\  \nonumber && [(1-f_{e}(\epsilon))+(1-f_{h}(\epsilon))] [f_{e}(\epsilon+\omega)+f_{h}(\epsilon+\omega)] \end{eqnarray}  \begin{eqnarray}  &&P^{>,4}(\omega) = \frac{4e^2}{\hbar^2} \int_{-\infty}^\infty \frac{d\epsilon}{2\pi} \sum_{\beta\gamma\alpha\delta} G^r_{\beta \alpha}(\epsilon) \Gamma_{\alpha\delta} G^a_{\delta \gamma}(\epsilon) \Gamma_{\gamma\gamma} G^{a}_{\gamma\beta}(\omega+\epsilon) [i\Gamma_{\beta\beta}]\\ \Gamma_{\gamma\tau} G^{a}_{\tau\theta}(\omega+\epsilon) [i\Gamma_{\theta\beta}]\\  \nonumber &&\times[(1-f_{e}(\epsilon))+(1-f_{h}(\epsilon))] f_{h}(\epsilon+\omega)  \end{eqnarray}  Now we collect $S^{>,2}(\omega)+S^{>,4}(\omega)$ $P^{>,2}(\omega)+P^{>,4}(\omega)$  \begin{eqnarray}  &&P^{>,2}(\omega)+ S^{>,4}(\omega) = -i\frac{4e^2}{\hbar^2} \int_{-\infty}^\infty \frac{d\epsilon}{2\pi} \sum_{\beta\gamma\alpha\delta} G^r_{\beta \alpha}(\epsilon) \Gamma_{\alpha\delta}(\epsilon) G^a_{\delta \gamma}(\epsilon)\Gamma_{\gamma\gamma} \gamma}(\epsilon)\Gamma_{\gamma\tau}  \\ \nonumber && [G^{r}_{\gamma\beta}(\omega+\epsilon)-G^{a}_{\gamma\beta}(\omega+\epsilon)] \Gamma_{\beta\beta}[(1-f_{e}(\epsilon))f_{h}(\epsilon+\omega)+(1-f_{h}(\epsilon)) [G^{r}_{\tau\theta}(\omega+\epsilon)-G^{a}_{\tau\theta}(\omega+\epsilon)] \Gamma_{\theta\beta}[(1-f_{e}(\epsilon))f_{h}(\epsilon+\omega)+(1-f_{h}(\epsilon))  f_{h}(\epsilon+\omega)] \end{eqnarray}  Now we replace $[G^{r}_{\gamma\beta}(\omega+\epsilon)-G^{a}_{\gamma\beta}(\omega+\epsilon)]= $[G^{r}_{\gamma\tau}(\omega+\epsilon)-G^{a}_{\gamma\beta}(\omega+\epsilon)]=  -4iG^r_{\gamma\nu}\Gamma_{\nu\mu}(\omega+\epsilon)G^{a}_{\mu\beta}(\omega+\epsilon)$, then \begin{eqnarray}  &&P^{>,2}(\omega)+ P^{>,4}(\omega) = \frac{-16e^2}{\hbar^2} \int_{-\infty}^\infty \frac{d\epsilon}{2\pi} \sum_{\beta\gamma\alpha\delta\mu\nu} G^r_{\beta \alpha}(\epsilon) \Gamma_{\alpha\delta}(\epsilon) G^a_{\delta \gamma}(\epsilon)\Gamma_{\gamma\gamma}[G^r_{\gamma\nu}(\omega+\epsilon)\Gamma_{\nu\mu}(\omega+\epsilon)G^{a}_{\mu\beta}(\omega+\epsilon)] \Gamma_{\beta\beta}  \\ \nonumber