Rosa edited untitled.tex  about 8 years ago

Commit id: 5f26ad50533e37115a35bba743e48067da1e3a29

deletions | additions      

       

Then we get  \begin{align*}  &M^>(\omega)=\frac{2 i e^2}{\hbar^2}\sum_{k\beta,q\gamma,\alpha\delta,\nu\mu} \int \frac{d\epsilon}{2\pi}\Biggr\{  V_{\beta k}^{*} g_{k}^{h,r}(\epsilon) V_{\alpha k} G^{r}_{\alpha\delta}(\epsilon) V_{\delta q}^* g_{q}^{h,>}(\epsilon) V_{\gamma q} G^{r}_{\gamma\nu}(\omega+\epsilon) \Gamma_{\nu\mu} G^{a}_{\nu\beta}(\omega+\epsilon)(f_e(\omega+\epsilon)+f_h(\omega+\epsilon)) G^{a}_{\mu\beta}(\omega+\epsilon)(f_e(\omega+\epsilon)+f_h(\omega+\epsilon))  \\  &+V_{\beta k}^{*} g_{k}^{h,r}(\epsilon) V_{\alpha k} G^{>}_{\alpha\delta}(\epsilon) V_{\delta q}^* g_{q}^{h,<}(\epsilon) V_{\gamma q} G^{r}_{\gamma\nu}(\omega+\epsilon) \Gamma_{\nu\mu} G^{a}_{\nu\beta}(\omega+\epsilon)(f_e(\omega+\epsilon)+f_h(\omega+\epsilon)) G^{a}_{\mu\beta}(\omega+\epsilon)(f_e(\omega+\epsilon)+f_h(\omega+\epsilon))  \\   &+V_{\beta k}^{*} g_{k}^{h,>}(\epsilon) V_{\alpha k} G^{a}_{\alpha\delta}(\epsilon) V_{\delta q}^* g_{q}^{h,a}(\epsilon) V_{\gamma q} G^{r}_{\gamma\nu}(\omega+\epsilon) \Gamma_{\nu\mu} G^{a}_{\nu\beta}(\omega+\epsilon) G^{a}_{\mu\beta}(\omega+\epsilon)  (f_e(\omega+\epsilon)+f_h(\omega+\epsilon))\Biggr\} \end{align*}  We now use the explicit expressions for the self-energies  \begin{align*}  &M^>(\omega)=\frac{2i e^2}{\hbar^2}\sum_{k\beta,q\gamma,\alpha\delta\nu\mu} \int \frac{d\epsilon}{2\pi}\Biggr\{  \\  &[\Sigma^{r,h}_{0,\beta\alpha}(\epsilon) G^{r}_{\alpha\delta}(\epsilon) \Sigma^{h,>}_{0,\delta\gamma}(\omega+\epsilon) G^{r}_{\gamma\nu}(\omega+\epsilon)\Gamma_{\nu\mu}G^{a}_{\nu\beta}(\omega+\epsilon)](f_{e}(\omega+\epsilon)+f_h(\omega+\epsilon)) G^{r}_{\gamma\nu}(\omega+\epsilon)\Gamma_{\nu\mu}G^{a}_{\mu\beta}(\omega+\epsilon)](f_{e}(\omega+\epsilon)+f_h(\omega+\epsilon))  + \\   \nonumber  &[\Sigma^{r,h}_{0,\beta\alpha}(\omega+\epsilon) G^{>}_{\alpha\delta}(\omega+\epsilon) &[\Sigma^{r,h}_{0,\beta\alpha}(\epsilon) G^{>}_{\alpha\delta}(\epsilon)  \Sigma^{h,a}_{0,\delta\gamma} (\omega+\epsilon)G^{r}_{\gamma\nu}(\omega+\epsilon)\Gamma_{\nu\mu}G^{a}_{\nu\beta}(\omega+\epsilon)](f_{e}(\omega+\epsilon)+f_h(\omega+\epsilon))+ (\omega+\epsilon)G^{r}_{\gamma\nu}(\omega+\epsilon)\Gamma_{\nu\mu}G^{a}_{\mu\beta}(\omega+\epsilon)](f_{e}(\omega+\epsilon)+f_h(\omega+\epsilon))+  \\   \nonumber  & [\Sigma^{>,h}_{0,\beta\alpha}(\epsilon) G^{a}_{\alpha\delta}(\epsilon) \Sigma^{h,a}_{0,\delta\gamma}(\omega+\epsilon) G^{r}_{\gamma\nu}(\omega+\epsilon)\Gamma_{\nu\mu}G^{a}_{\nu\beta}(\omega+\epsilon)](f_{e}(\omega+\epsilon)+f_h(\omega+\epsilon)) G^{r}_{\gamma\nu}(\omega+\epsilon)\Gamma_{\nu\mu}G^{a}_{\mu\beta}(\omega+\epsilon)](f_{e}(\omega+\epsilon)+f_h(\omega+\epsilon))  \Biggr\} \end{align*}  Then we obtain,   \begin{eqnarray}  &&M^>(\omega)=\frac{4 \begin{slign*}  &M^>(\omega)=\frac{4  e^2}{\hbar^2}\sum_{k\beta,q\gamma,\alpha\delta\nu\mu} \int \frac{d\epsilon}{2\pi}\Biggr\{ [-i\Gamma_{\beta\alpha}] G^{r}_{\alpha\delta}(\omega+\epsilon) G^{r}_{\alpha\delta}(\epsilon)  \Gamma_{\delta\gamma} G^{r}_{\gamma\nu}(\epsilon)\Gamma_{\nu\mu}](f_{e}(\omega+\epsilon)+f_h(\omega+\epsilon))(1-f_h(\omega+\epsilon)) G^{r}_{\gamma\nu}(\omega+\epsilon)\Gamma_{\nu\mu}G^{a}_{\mu\beta}(\omega+\epsilon)](f_{e}(\omega+\epsilon)+f_h(\omega+\epsilon))(1-f_h(\omega+\epsilon))  + \\   \nonumber  &&[\sum_{\theta\tau} &[\sum_{\theta\tau}  [-i\Gamma_{\beta\alpha}] G^{r}_{\alpha\theta}(\omega+\epsilon)\Gamma_{\theta\tau}G^{a}_{\tau\delta}(\omega+\epsilon) [i\Gamma_{\delta\gamma}] G^{r}_{\gamma\nu}(\epsilon)\Gamma_{\nu\mu}G ^{a}_{\mu\beta}(\epsilon)](f_{e}(\omega+\epsilon)+f_h(\omega+\epsilon)) ^{a}_{\mu\beta}(\omega+\epsilon)](f_{e}(\omega+\epsilon)+f_h(\omega+\epsilon))  (1-f_{e}(\epsilon)+1-f_h(\epsilon)) + \\   \nonumber  && &  [\Gamma_{\beta\alpha}(\omega+\epsilon) G^{a}_{\alpha\delta}(\omega+\epsilon) [i\Gamma_{\delta\gamma}] G^{r}_{\gamma\nu}(\epsilon)\Gamma_{\nu\mu}](f_{e}(\omega+\epsilon)+f_h(\omega+\epsilon)(1-f_h(\epsilon))) G^{r}_{\gamma\nu}(\epsilon)\Gamma_{\nu\mu}G ^{a}_{\mu\beta}(\omega+\epsilon)](f_{e}(\omega+\epsilon)+f_h(\omega+\epsilon)(1-f_h(\epsilon)))  \Biggr\} \end{eqnarray} \end{align*}  Again, the "lesser" term for $M(t,t')$ is obtained by exchanging $1-f$ by $f$ and viceversa.  The last term that we need to compute is $Q>(t,t')+Q<(t,t')= G^{h,>}_{k\gamma}(t,t')G^{<}_{q \beta}(t',t)+ G^{h,<}_{k\gamma}(t,t')G^{>}_{q \beta}(t',t)$. We only calculate $Q^>(t,t')$. For such calculation we employ  \begin{eqnarray}