Rosa edited untitled.tex  about 8 years ago

Commit id: 595f6ddda9760756af861dd7ca4a77a9655e92b6

deletions | additions      

       

Then, the ac spectral noise becomes  \begin{multline}  S^>(\omega)=\frac{e^2}{\hbar^2}\sum_{k\beta,q\gamma} \frac{1}{2\pi}\int_{-\infty}^\infty  d\omega e^{-i\omega (t-t')} \frac{1}{2\pi}\int_{-\infty}^\infty d\epsilon_1 e^{-i\epsilon e^{-i\epsilon_1  (t-t')} \frac{1}{2\pi}\int_{-\infty}^\infty d\epsilon_2 e^{i\epsilon e^{i\epsilon_2  (t-t')} \\   \Biggr\{  V_{\beta k} V_{\gamma q}^{*} [G^t_{\beta\gamma}(\epsilon_1) G^{h,t}_{qk}(\epsilon_2) [G^>_{\beta\gamma}(\epsilon_1) G^<{h,t}_{qk}(\epsilon_2)  - G^{t}_{\beta q}(\epsilon_1)G^{h,t}_{\gamma G^{>}_{\beta q}(\epsilon_1)G^{h,<}_{\gamma  k}(\epsilon_2)] + V_{\beta k}^{*}V_{\gamma q} [G^{h,t}_{kq}(\epsilon_1) G{t}_{\gamma\beta}(\epsilon_2) [G^{>,t}_{kq}(\epsilon_1) G{<}_{\gamma\beta}(\epsilon_2)  - G^{h,t}_{k\gamma}(\epsilon_1)G^{t}_{q G^{h,>}_{k\gamma}(\epsilon_1)G^{<}_{q  \beta}(\epsilon_2)]\Biggr\}\,, \end{multline}