Rosa edited untitled.tex  about 8 years ago

Commit id: 4eee9732e8e110bd42213b995b9643908eaf15eb

deletions | additions      

       

+ V_{\beta k}^{*}V_{\gamma q}  \langle T c_{k}^\dagger(t) \eta_\beta(t)\eta_\gamma(t')c_q(t')\rangle \,,  \end{multline}  We apply Wick theorem to $S^t(t,t')$, the then  \begin{eqnarray}  &&S^t(t,t´)=\frac{e^2}{\hbar^2}\sum_{k\beta,q\gamma} V_{\beta k} V_{\gamma q}^{*}  \\ 

-\langle T \eta_\beta (t)c^\dagger_q(t')\rangle \langle T \eta_\gamma(t') c_{k}(t)\rangle\Biggr\}   \\  \nonumber  && + V_{\beta k}^{*}V_{\gamma q}\Biggr\{\langle T c_{k}^\dagger(t) c_q(t')\rangle \langle \eta_\gamma(t')\eta_\beta(t)\rangle -\langle T c_{k}^\dagger(t)\eta_\gamma(t') \rangle\langle T  c_q(t')\eta_\beta(t)\rangle\Biggr\}\,, \end{eqnarray}  The Green functions for the Majorana-Majorana, Majorana-Lead, and Lead-lead cases are  \begin{eqnarray}  G^{t}_{kq}(t,t') = -i\langle T c_k(t) c^\dagger_q(t') \rangle, \quad\,\, G^{t,h}_{kq}(t,t') = -i\langle T c^\dagger_k(t) c_q(t') \rangle  \end{eqnarray}  \begin{eqnarray}  G^{t}_{\beta\gamma}(t,t') = -i\langle T \eta_\beta(t) \eta_\gamma(t') \rangle,   \end{eqnarray}  \begin{eqnarray}  G^{t}_{k\beta}(t,t') = -i\langle T c_k(t) \eta_\beta(t') \rangle, \quad\,\, G^{t,h}_{kq}(t,t') = -i\langle T c^\dagger_k(t) \eta_\beta(t') \rangle  \end{eqnarray}  \begin{eqnarray}  G^{t}_{\beta k}(t,t') = -i\langle T \eta_\beta(t) c^\dagger_k(t') \rangle, \quad\,\, G^{t,h}_{kq}(t,t') = -i\langle T \eta_\beta(t) c_k(t') \rangle  \end{eqnarray}  Using the definition for the Green functions we can write down the expression for $S^t(t,t')$  \begin{eqnarray}  &&S^t(t,t´)=\frac{e^2}{\hbar^2}\sum_{k\beta,q\gamma} V_{\beta k} V_{\gamma q}^{*}  [G^t_{\beta\gamma}(t,t') G^{h,t}_{qk}(t',t) G^{t,h}_{qk}(t',t)  - G^{t}_{\beta q}(t,t')G^{h,t}_{\gamma k}(t',t)]\\ \nonumber && + V_{\beta k}^{*}V_{\gamma q} [G^{h,t}_{kq}(t,t') [G^{t,h}_{kq}(t,t')  G{t}_{\gamma\beta}(t',t) - G^{h,t}_{k\gamma}(t,t')G^{t}_{q G^{t,h}_{k\gamma}(t,t')G^{t}_{q  \beta}(t',t)] \end{eqnarray}  Finally, we employ the following relation to obtain $S^{<(>)}(t,t')$:  \begin{equation}  S(t,t') = A(t,t') B(t',t) \rightarrow S^{>(<)}(t,t') = A^{>(<)}(t,t') B^{<(>)}(t',t)   \end{equation}  Now we compute the lead-lead Green function $G^{h,t}_{kq}(t,t')=\langle $G^{t,h}_{kq}(t,t')=\langle  T c_k^\dagger(t) c_q(t')\rangle$ that appears in the previous expression. We compute its equation-of-motion \begin{equation}  i\hbar \partial_{t'} G_{kq}^{h,t}(t,t') = \epsilon_q G_{kq}^{h,t}(t,t') G_{kq}^{t,h}(t,t')  + \sum_\beta V_{\beta q}^* G^{h,t}_{k\beta}(t,t') \end{equation}  Then we get  \begin{equation}  G_{kq}^{h,t}(t,t') G_{kq}^{t,h}(t,t')  = G_{kq}^{h,t}(t,t')\delta_{kq} G_{kq}^{t,h}(t,t')\delta_{kq}  + \frac{-1}{\hbar} \sum_\beta\int \sum_\tau\int  dt_1 G^{h,t}_{k\beta}(t,t')V_{\beta G^{t,h}_{k\tau}(t,t')V_{\tau  q}^* g_{q}^{h,t}(t_1,t') g_{q}^{t,h}(t_1,t')  \end{equation}  In a similar way we can obtain the mixed (hole) lead-Majorana Green function $G_{k\beta}^{h,t}{t,t'}$ $G_{k\beta}^{t,h}{t,t'}$  \begin{equation}  G_{k\beta}^{h,t}(t,t') G_{k\tau}^{t,h}(t,t')  = \frac{-1}{\hbar} \sum_\beta\int \sum_{\theta}\int  dt_1 g_{k}^{h,t}(t,t_1) V_{\gamma g_{k}^{t,h}(t,t_1) V_{\theta  k} G^{t}_{\gamma\beta}(t,t') G^{t}_{\theta\tau}(t,t')  \end{equation}  Then, inserting the previous expression into the equation for $G_{qk}^{h,t}(t,t')$, we obtain  \begin{equation} 

d\omega e^{-i\omega (t-t')} \frac{1}{2\pi}\int_{-\infty}^\infty d\epsilon_1 e^{-i\epsilon_1 (t-t')} \frac{1}{2\pi}\int_{-\infty}^\infty d\epsilon_2 e^{i\epsilon_2 (t-t')}  \\   \Biggr\{  V_{\beta k} V_{\gamma q}^{*} [G^>_{\beta\gamma}(\epsilon_1) G^{h,<}_{qk}(\epsilon_2) G^{<,h}_{qk}(\epsilon_2)  - G^{>}_{\beta q}(\epsilon_1)G^{h,<}_{\gamma q}(\epsilon_1)G^{<,h}_{\gamma  k}(\epsilon_2)] + V_{\beta k}^{*}V_{\gamma q} [G^{>,t}_{kq}(\epsilon_1) G^{<}_{\gamma\beta}(\epsilon_2) - G^{h,>}_{k\gamma}(\epsilon_1)G^{<}_{q G^{>,h}_{k\gamma}(\epsilon_1)G^{<}_{q  \beta}(\epsilon_2)]\Biggr\}\,, \end{multline}  Now we enter the expression for $G_{kq}^{h,t}(t,t')$ $G_{kq}^{t,h}(t,t')$  in the frequency domain \begin{equation}  G_{qk}^{h,t}(\omega) = g_{q}^{h,t}(\omega)\delta_{kq} g_{q}^{t,h}(\omega)\delta_{kq}  + \sum_{\tau\theta} g_{q}^{h,t}(\omega) g_{q}^{t,h}(\omega)  V_{\tau q} G^{t}_{\tau\theta}(\omega)V_{\theta k}^* g_{k}^{h,t}(\omega)\,, g_{k}^{t,h}(\omega)\,,  \end{equation}  \begin{multline}