Rosa edited untitled.tex  about 8 years ago

Commit id: 47dab76a9fba1e75add4a0febc03adf402d40cbf

deletions | additions      

       

Then we get  \begin{align*}  &M^>(\omega)=\frac{2 i e^2}{\hbar^2}\sum_{k\beta,q\gamma,\alpha\delta,\nu\mu} \int \frac{d\epsilon}{2\pi}\Biggr\{  \\  &  V_{\beta k}^{*} g_{k}^{h,r}(\epsilon) V_{\alpha k} G^{r}_{\alpha\delta}(\epsilon) V_{\delta q}^* g_{q}^{h,>}(\epsilon) V_{\gamma q} G^{r}_{\gamma\nu}(\omega+\epsilon) \Gamma_{\nu\mu} G^{a}_{\mu\beta}(\omega+\epsilon)(f_e(\omega+\epsilon)+f_h(\omega+\epsilon)) \\  &+V_{\beta k}^{*} g_{k}^{h,r}(\epsilon) V_{\alpha k} G^{>}_{\alpha\delta}(\epsilon) V_{\delta q}^* g_{q}^{h,<}(\epsilon) V_{\gamma q} G^{r}_{\gamma\nu}(\omega+\epsilon) \Gamma_{\nu\mu} G^{a}_{\mu\beta}(\omega+\epsilon)(f_e(\omega+\epsilon)+f_h(\omega+\epsilon))  \\  

Again, the "lesser" term for $M(t,t')$ is obtained by exchanging $1-f$ by $f$ and viceversa.  The last term that we need to compute is $Q>(t,t')+Q<(t,t')= G^{h,>}_{k\gamma}(t,t')G^{<}_{q \beta}(t',t)+ G^{h,<}_{k\gamma}(t,t')G^{>}_{q \beta}(t',t)$. We only calculate $Q^>(t,t')$. For such calculation we employ  \begin{eqnarray}  G^{h,>}_{k\gamma}(\omega+\epsilon) G^{h,>}_{k\gamma}(\epsilon)  = \sum_\alpha [g^{r,h}_{k}(\omega) [g^{r,h}_{k}(\epsilon)  V_{\alpha k} G_{\alpha\gamma}^>(\omega)+g^{>,h}_{k}(\omega) G_{\alpha\gamma}^>(\epsilon)+g^{>,h}_{k}(\epsilon)  V_{\alpha k} G_{\alpha\gamma}^a(\omega)] G_{\alpha\gamma}^a(\epsilon)]  \end{eqnarray}  \begin{eqnarray}  G^{<}_{q \beta}(\omega) \beta}(\omega+\epsilon)  = \sum_\alpha [g^{r}_{q}(\omega+\epsilon) V^*_{\alpha q} G_{\alpha\beta}^<(\omega+\epsilon)+g^{<}_{q}(\epsilon) G_{\alpha\beta}^<(\omega+\epsilon)+g^{<}_{q}(\omega+\epsilon)  V^*_{\alpha q} G_{\alpha\beta}^a(\epsilon) G_{\alpha\beta}^a(\omega+\epsilon)  ] \end{eqnarray}  Then  \begin{eqnarray}  Q^>(\omega) = \begin{align*}  \frac{ e^2}{\hbar^2}\sum_{k\beta,q\gamma,\alpha} \int \frac{d\epsilon}{2\pi}\Biggr\{[V^*_{\beta k} g^{r,h}_{k}(\omega+\epsilon) \frac{d\epsilon}{2\pi}\\  &[g^{r,h}_{k}(\epsilon)  V_{\alpha k} G_{\alpha\gamma}^>(\omega+\epsilon)+ V^*_{\beta k} g^{>,h}_{k}(\omega+\epsilon) G_{\alpha\gamma}^>(\epsilon)+g^{>,h}_{k}(\epsilon)  V_{\alpha k} G_{\alpha\gamma}^a(\omega+\epsilon)] G_{\alpha\gamma}^a(\epsilon)]  [ V_{\gamma q} g^{r}_{q}(\epsilon) g^{r}_{q}(\omega+\epsilon)  V^*_{\alpha q} G_{\alpha\beta}^<(\epsilon)+ G_{\alpha\beta}^<(\omega+\epsilon)+  V_{\gamma q} g^{<}_{q}(\epsilon) V^*_{\alpha q} G_{\alpha\beta}^a(\epsilon) G_{\alpha\beta}^a(\omega+\epsilon)  ] \end{eqnarray} \end{align*}  Then we have  \begin{eqnarray}  Q^>(\omega) \begin{align*}  &Q^>(\omega)  = \frac{ e^2}{\hbar^2}\sum_{k\beta,q\gamma,\alpha} \int \frac{d\epsilon}{2\pi}[\Sigma_{0,\beta\alpha}^r (\omega+\epsilon)G_{\alpha\gamma}^>(\omega+\epsilon)+ \Sigma_{0,\beta\alpha}^> (\omega+\epsilon) G_{\alpha\gamma}^a(\omega+\epsilon)] [\Sigma^r_{0,\gamma \\  &[\Sigma^r_{0,\gamma  \alpha}(\epsilon) G_{\alpha\beta}^<(\epsilon)+ \Sigma^<_{0,\gamma \alpha}(\epsilon)G_{\alpha\beta}^a(\omega)] \end{eqnarray} \end{align*}  We can split $Q^>(\omega)$ in four contributions  \begin{eqnarray}  Q^{>,1}(\omega) = \frac{ 4e^2}{\hbar^2}\sum_{k\beta,q\gamma,\alpha\mu\nu\tau,\delta\lambda} \int \frac{d\epsilon}{2\pi}[-i\Gamma_{\beta\alpha}]G_{\alpha\delta}^r(\omega+\epsilon)\Gamma_{\delta\lambda} G_{\lambda\gamma}^a(\omega+\epsilon) [-i\Gamma_{\gamma\tau}]G_{\tau\mu}^r(\epsilon)\Gamma_{\mu\nu} G_{\nu\beta}^a(\epsilon)((1-f_h(\omega+\epsilon)+(1-f_e(\omega+\epsilon)))(f_e(\epsilon)+f_h(\epsilon))