Rosa edited untitled.tex  about 8 years ago

Commit id: 433472a8a7d6e329c22c0ad918558677613a6cca

deletions | additions      

       

\textit{Oh, an empty article!} AC Noise for the Majorana RC circuit  You The current operator the the RC Majorana nanowire problem is defined as  \begin{equation}  I(t)=\frac{ie}{\hbar}\sum_{k\beta} V_{\beta k}\eta_\beta c_k - V_{\beta k}^{*}c_{k}^\dagger \eta_\beta\,,  \end{equation}  The charge noise  can get started by \textbf{double clicking} this text block and begin editing. You be expressed as   \begin{equation}  S(t,t') = S(t,t')^>+S(t,t')^<  \end{equation}  where $S(t,t')=\langle I(t),I(t')\rangle$. Let us consider now the time-ordered $S^t(t,t')^$, then  \begin{eqnarray}  &&S^t(t,t´)^t= \nonumber  \\  &&\frac{e^2}{\hbar^2}\sum_{k\beta,q\gamma} V_{\beta k} V_{\gamma q}^{*}  \langle T \eta_\beta (t)c_k(t)c_{q}^\dagger(t') \eta_\gamma(t') \rangle   + V_{\beta k}^{*}V_{\gamma q}  \langle T c_{k}^\dagger(t) \eta_\beta(t)\eta_\gamma(t')c_q(t')\rangle \,,  \end{eqnarray}  We apply Wick theorem to $S^t(t,t')$, the  \begin{eqnarray}  &&S^t(t,t´)^t=\frac{e^2}{\hbar^2}\sum_{k\beta,q\gamma} V_{\beta k} V_{\gamma q}^{*}  \\  \nonumber  &&\Biggr\{\langle T \eta_\beta (t)\eta_\gamma(t')\rangle \langle T c^\dagger_q(t')c_{k}(t)\rangle   -\langle T \eta_\beta (t)c^\dagger_q(t')\rangle \langle T \eta_\gamma(t') c_{k}(t)\rangle\Biggr\}   \\  \nonumber  && + V_{\beta k}^{*}V_{\gamma q}\Biggr\{\langle T c_{k}^\dagger(t) c_q(t')\rangle \langle \eta_\gamma(t')\eta_\beta(t)\rangle -\langle T c_{k}^\dagger(t)\eta_\gamma(t') \rangle\langle c_q(t')\eta_\beta(t)\rangle\Biggr\}\,,  \end{eqnarray}  Using the definition for the Green functions we  can also click write down the expression for $S^t(t,t')$  \begin{eqnarray}  &&S^t(t,t´)^t=\frac{e^2}{\hbar^2}\sum_{k\beta,q\gamma} V_{\beta k} V_{\gamma q}^{*}  [G^t_{\beta\gamma}(t,t') G^{h,t}_{qk}(t',t) - G^{t}_{\beta q}(t,t')G^{h,t}_{\gamma k}(t',t)]\\ \nonumber  && + V_{\beta k}^{*}V_{\gamma q} [G^{h,t}_{kq}(t,t') G{t}_{\gamma\beta}(t',t) - G^{h,t}_{k\gamma}(t,t')G^{t}_{q \beta}(t',t)]  \end{eqnarray}  Finally, we employ  the \textbf{Text} button below following relation  to add new block elements. Or you obtain $S^{<(>)(t,t')}$:  \begin{equation}  S(t,t') = A(t,t') B(t',t) \rightarrow S^{>(<)}(t,t') = A^{>(<)}(t,t') B^{<(>)}(t',t)   \end{equation}  Now we compute the lead-lead Green function $G^{h,t}_{kq}(t,t')=\langle T c_k^\dagger(t) c_q(t')\rangle$ that appears in the previous expression. We compute its equation-of-motion  \begin{equation}  i\hbar \partial_{t'} G_{kq}^{h,t}(t,t') = \epsilon_q G_{kq}^{h,t}(t,t') + \sum_\beta V_{\beta q}^* G^{h,t}_{k\beta}(t,t')  \end{equation}  Then we get  \begin{equation}  G_{kq}^{h,t}(t,t') = G_{kq}^{h,t}(t,t')\delta_{kq} + \frac{-1}{\hbar} \sum_\beta\int dt_1 G^{h,t}_{k\beta}(t,t')V_{\beta q}^* g_{q}^{h,t}(t_1,t')  \end{equation}  In a similar way we  can \textbf{drag and drop an image} right onto this text. Happy writing! obtain the mixed (hole) lead-Majorana Green function $G_{k\beta}^{h,t}{t,t'}$  \begin{equation}  G_{k\beta}^{h,t}{t,t'} = \frac{-1}{\hbar} \sum_\beta\int dt_1 g_{k}^{h,t}(t,t_1) V_{\gamma k} G^{t}_{\gamma\beta}(t,t')  \end{equation}  Then, inserting the previous expression into the equation for $G_{kq}^{h,t}(t,t')$, we obtain  \begin{equation}  G_{kq}^{h,t}(t,t') = G_{kq}^{h,t}(t,t')\delta_{kq} + \sum_{\beta\gamma}\int \frac{-dt_1}{\hbar}\frac{-dt_2}{\hbar} g_{k}^{h,t}(t,t_1) V_{\gamma k} G^{t}_{\gamma\beta}(t_1,t_2)V_{\beta q}^* g_{q}^{h,t}(t_2,t')  \end{equation}  The rest of equations for the Green functions that appear in the noise expression are already in J. S note.