Rosa edited untitled.tex  about 8 years ago

Commit id: 3fa4a4e085ee9cfb07753e7627a3623b4003ffbe

deletions | additions      

       

The rest of equations for the Green functions that appear in the noise expression are already in J. S note.   Now we employ the following definition for the Fourier transform  \begin{equation}  F(t-t')=\frac{1}{2\pi}\int_{-\infty}^\infty} F(t-t')=\frac{1}{2\pi}\int_{-\infty}^\infty  d\omega e^{-i\omega t} F(\omega)\,, \end{equation}  Then, the ac spectral noise becomes  \begin{multline} 

d\omega e^{-i\omega (t-t')} \frac{1}{2\pi}\int_{-\infty}^\infty d\epsilon_1 e^{-i\epsilon (t-t')} \frac{1}{2\pi}\int_{-\infty}^\infty d\epsilon_2 e^{i\epsilon (t-t')}  \\   \Biggr\{  [V_{\beta V_{\beta  k} V_{\gamma q}^{*} G^t_{\beta\gamma}(\epsilon_1) [G^t_{\beta\gamma}(\epsilon_1)  G^{h,t}_{qk}(\epsilon_2) - G^{t}_{\beta q}(\epsilon_1)G^{h,t}_{\gamma k}(\epsilon_2)] + V_{\beta k}^{*}V_{\gamma q} [G^{h,t}_{kq}(\epsilon_1) G{t}_{\gamma\beta}(\epsilon_2) - G^{h,t}_{k\gamma}(\epsilon_1)G^{t}_{q \beta}(\epsilon_2)]\Biggr\}\,,  \end{multline}