Rosa edited untitled.tex  about 8 years ago

Commit id: 2e8a32f34cb9e1b7c44823dee5f12b44c7f106d4

deletions | additions      

       

G^{<,h}_{\gamma k}(\omega+\epsilon) = \sum_\beta [G_{\gamma\beta}^r(\omega+\epsilon) V^*_{\beta k} g^{<,h}_{k}(\omega+\epsilon)+ G_{\gamma\beta}^<(\omega+\epsilon) V^*_{\beta k} g^{a,h}_{k}(\omega+\epsilon)]  \end{eqnarray}  Then, we have  \begin{eqnarray}  &&N^>(\omega)=(e^2/h)\sum_{k\beta,q\gamma, \begin{align*}  &N^>(\omega)=(e^2/h)\sum_{k\beta,q\gamma,  \nu\mu} \int \frac{d\epsilon}{2\pi} V_{\beta k} V^*_{\gamma q} [G_{\beta\nu}^r(\omega+\epsilon) V_{\nu q} g^{>}_{q}(\omega+\epsilon)+ G_{\beta\nu}^>(\omega+\epsilon) V_{\nu q} g^{a}_{q}(\omega+\epsilon)]   \\ \nonumber  &&[G_{\gamma\mu}^r(\epsilon) &[G_{\gamma\mu}^r(\epsilon)  V^*_{\mu k} g^{<,h}_{k}(\epsilon)+ G_{\gamma\mu}^<(\epsilon) V^*_{\mu k} g^{a,h}_{k}(\epsilon)] \end{eqnarray} \end{align*}  \begin{eqnarray}  N^>(\omega)&=&(e^2/h)\sum_{k\beta,q\gamma, \begin{align*}  &N^>(\omega)=(e^2/h)\sum_{k\beta,q\gamma,  \nu\mu} \int \frac{d\epsilon}{2\pi} [G_{\beta\nu}^r(\epsilon) V_{\nu q} g^{>}_{q}(\epsilon) V^*_{\gamma q} G_{\gamma\mu}^r(\omega+\epsilon) V^*_{\mu k} g^{<,h}_{k}(\omega+\epsilon) V_{\beta k}]   \\ \nonumber  &&[G_{\beta\nu}^r(\epsilon) &[G_{\beta\nu}^r(\epsilon)  V_{\nu q} g^{>}_{q}(\epsilon) V^*_{\gamma q} G_{\gamma\mu}^<(\omega+\epsilon) V^*_{\mu k} g^{a,h}_{k}(\omega+\epsilon) V_{\beta k}] \\\nonumber  &&[G_{\beta\nu}^>(\epsilon) V_{\nu q} g^{a}_{q}(\epsilon) V^*_{\gamma q} G_{\gamma\mu}^r(\omega+\epsilon) V^*_{\mu k} g^{<,h}_{k}(\omega+\epsilon) V_{\beta k}]  \\\nonumber  &&[G_{\beta\nu}^>(\epsilon) V_{\nu q} g^{a}_{q}(\epsilon) V^*_{\gamma q} G_{\gamma\mu}^<(\omega+\epsilon) V^*_{\mu k} g^{a,h}_{k}(\omega+\epsilon) V_{\beta k}]  \end{eqnarray} \end{align*}  Inserting the expressions for the self-energies we get  \begin{eqnarray}  N^>(\omega)&=&(e^2/h)\sum_{k\beta,q\gamma, \begin{align*}  &N^>(\omega)=(e^2/h)\sum_{k\beta,q\gamma,  \nu\mu} \int \frac{d\epsilon}{2\pi} [G_{\beta\nu}^r(\epsilon) \Sigma_{0,\nu\gamma}^>(\epsilon) G_{\gamma\mu}^r(\epsilon+\omega) \Sigma_{0,\mu\beta}^{<,h}(\epsilon+\omega)]   \\ \nonumber  &&[G_{\beta\nu}^r(\epsilon) &[G_{\beta\nu}^r(\epsilon)  \Sigma_{0,\nu\gamma}^>(\epsilon) G_{\gamma\mu}^<(\epsilon+\omega) \Sigma_{0,\mu\beta}^{a,h}(\epsilon+\omega)] \\ \nonumber  &&[G_{\beta\nu}^>(\epsilon) &[G_{\beta\nu}^>(\epsilon)  \Sigma_{0,\nu\gamma}^a(\epsilon) G_{\gamma\mu}^r(\omega+\epsilon)\Sigma_{0,\mu\beta}^{<,h}(\omega+\epsilon)] \\ \nonumber  &&[G_{\beta\nu}^>(\epsilon) &[G_{\beta\nu}^>(\epsilon)  \Sigma_{0,\nu\gamma}^a(\epsilon) G_{\gamma\mu}^<(\epsilon+\omega) \Sigma_{0,\mu\beta}^{a,h}(\epsilon+\omega)] \end{eqnarray} \end{align*}  \begin{align*}  &N^>(\omega)=(4e^2/h)\sum_{k\beta,q\gamma, \nu\mu} \int \frac{d\epsilon}{2\pi} \times \Biggr\{