Rosa edited untitled.tex  about 8 years ago

Commit id: 15b74580ae8e99779ef932dab2b81df8a9af6282

deletions | additions      

       

In the particle-hole case we take $\Gamma(\epsilon)=\Gamma(-\epsilon)$. Besides we consider the WBL and take $\Gamma$ as constants, then  \begin{eqnarray}  && S^{>,1}(\omega)= \frac{e^2}{\hbar^2}\int_{-\infty}^\infty \frac{d\epsilon}{2\pi} \sum_{\beta\gamma\alpha\delta} G^r_{\beta \alpha}(\epsilon) \Sigma^>_{0,\alpha\delta}(\epsilon) G^a_{\delta \gamma}(\epsilon)\Sigma^{h,<}_{0,\alpha\delta}(\epsilon+\omega) \\ \nonumber  &=& \frac{-4e^2}{\hbar^2}\int_{-\infty}^\infty \frac{d\epsilon}{2\pi} \sum_{\beta\gamma\alpha\delta} [G^r_{\beta \alpha}(\epsilon) \Gamma_{\alpha\delta} G^a_{\delta \gamma}(\epsilon) \Gamma_{\alpha\delta} [(1-f_{e}(\epsilon))f_{h}(\epsilon)+(1-f_{h}(\epsilon)) f_{h}(\epsilon)] [(1-f_{e}(\epsilon))f_{h}(\epsilon+\omega)+(1-f_{h}(\epsilon)) f_{h}(\epsilon+\omega)]  \end{eqnarray}  \begin{eqnarray}  S^{>,2}(\omega) = \frac{-4e^2}{\hbar^2} \int_{-\infty}^\infty \frac{d\epsilon}{2\pi} \sum_{\beta\gamma\alpha\delta} G^r_{\beta \alpha}(\epsilon) \Gamma_{\alpha\delta}(\epsilon) G^a_{\delta \gamma}(\epsilon) [-i\Gamma_{\gamma\gamma}] G^{r}_{\gamma\beta}(\omega+\epsilon) \Gamma_{\beta\beta}[(1-f_{e}(\epsilon))f_{h}(\epsilon)+(1-f_{h}(\epsilon)) f_{h}(\epsilon)]