Rosa edited untitled.tex  about 8 years ago

Commit id: 049440885c593966e972823f6bea92b83eb867b8

deletions | additions      

       

\end{align*}  Then we obtain,   \begin{align*}  &M^>(\omega)=\frac{4 e^2}{\hbar^2}\sum_{k\beta,q\gamma,\alpha\delta\nu\mu} \int \frac{d\epsilon}{2\pi}\Biggr\{ &\\[-i\Gamma_{\beta\alpha}] \\  & [-i\Gamma_{\beta\alpha}]  G^{r}_{\alpha\delta}(\epsilon) \Gamma_{\delta\gamma} G^{r}_{\gamma\nu}(\omega+\epsilon)\Gamma_{\nu\mu}G^{a}_{\mu\beta}(\omega+\epsilon)](f_{e}(\omega+\epsilon)+f_h(\omega+\epsilon))(1-f_h(\epsilon)) + \\   &[\sum_{\theta\tau} [-i\Gamma_{\beta\alpha}] G^{r}_{\alpha\theta}(\omega+\epsilon)\Gamma_{\theta\tau}G^{a}_{\tau\delta}(\omega+\epsilon) [i\Gamma_{\delta\gamma}] G^{r}_{\gamma\nu}(\omega+\epsilon)\Gamma_{\nu\mu}G ^{a}_{\mu\beta}(\omega+\epsilon)](f_{e}(\omega+\epsilon)+f_h(\omega+\epsilon)) (1-f_{e}(\epsilon)+1-f_h(\epsilon)) +   \\