Virgil Șerbănuță edited untitled.tex  about 8 years ago

Commit id: 39abbdc9a5af95c2af4cf7bdcec14110ef40aa74

deletions | additions      

       

Let us restrict the possible worlds term to the worlds where we can make predictions and let us use only sets of axioms that allow predictions. As defined above, for a given world, a good set of axioms is one which allows us to make all possible correct predictions for that world (statistical or not). Using only good sets of axioms solves the too-general problem since such a set would describe its possible worlds in a way that does not leave out important things. Still, there is nothing that prevents such a set from going into too much detail.  Let us chose any formalism for specifying axioms that uses a finite alphabet and let us choose an arbitrary order relation on that alphabet. Also, let us consider only axiom sets which, when written on an infinite paper, use at most a countable number of symbols. Then, for each possible world, we could say that the best set of axioms is the smallest good one, smallest being defined as having the smallest length when written on (possibly infinite) the infinite  paper. This is not a well fully  defined notion, order relation,  so let us also say that for sets of axioms having finite length we will break any ties by using the lexicographic order. For worlds having only sets of axioms of infinite length we can't use the same trick to break ties, but they all have the same length (countably infinite) so we will choose any such set of axioms and say that it's the best one\footnote{Note that we could try a few things to find a canonical set for the infinite case, e.g. whenever a set of axioms is implied by a smaller finite set we could replace it, but it's not clear that any such method will be enough}. With an axiom set chosen in this way we would also solve the too-specific problem in the finite case. In the infinite case we have made an arbitrary decision, but then the cardinality of the axiom set matches the complexity of the world anyway, even if there is some redundancy. If $U$ is an universe and $A$ is the axiom set chosen as above, then we would say than $A$ is the \definitie{optimal set of axioms for $U$}. If $A$ is a set of axioms which is optimal for some universe $U$ then we say that $A$ is an \definitie{optimal set of axioms}.