Elizabeth edited sectionAnalysis.tex  about 10 years ago

Commit id: a18fe1edba7110e51db4e35737c1afe98e769f20

deletions | additions      

       

\end{figure}  The average E-mode components correspond to the shear value which depends on the geometrical factor $ \beta = D_{LS}/ D_{L} $, where $D_{LS}$ is the angular diameter distance from the lens to the background source galaxy, and $D_{L}$ is the distance from the observer to the background galaxy. A galaxy at the same radial distance from the center of the cluster but at a different background redshift is sheared differently. To remove this variation, we divide the estimated shear by $\beta$, which results in the infinite redshift limit (z $\rightarrow \infty$) shear value, that is only function of the radial distance from the cluster center. To estimate $\beta$ we used once more Coupon's catalogue, since we can consider that this catalogue is complete up to our magnitude limit. We applied the photometric selection criteria to the catalogue and then we computed $\beta$ for the whole distribution of field galaxies, taking into account the contamination by foreground galaxies given our selection criteria by setting $\beta(z_{phot} < z_{cluster}) = 0$. The averaged geometrical factors for each cluster are given in Table\,\ref{table:2}.  \subsection{Fiting the profiles}   We finally estimate the cluster mass fitting the shear data with the singular isothermal   sphere (SIS) and the NFW profile (Navarro et al. 1997). We will explain briefly the lensing formulae for these two profiles:  \subsubsection{SIS profile}  The SIS mass model is the simplest one for describing a relaxed massive sphere with a constant and isotropic velocity dispersion, $\sigma_{V}$. This is mainly described by the density distribution:  \begin{equation*}  \rho(r) = \dfrac{\sigma_{V}^{2}}{2 \pi G r^{2}}  \end{equation*}  where $c$ is the speed of light and \textit{G} is the gravitational constant. From this ecuation, we can get the critical Einstein radius for source at $z \rightarrow \infty $ ($\beta =1$) as:  \begin{equation*}  \theta_{E} = \dfrac{4 \pi \sigma_{V}^{2}}{c^{2}}  \end{equation*}  In terms of wich one obtains:  \begin{equation*}  \kappa_{\theta} = \gamma_{\theta} = \dfrac{\theta_{E}}{2 \theta}  \end{equation*}  where $\theta$ is the distance to the cluster center. Hence, fitting the shear for different radius, we can estimate the Einstein radius, and from that, we can obtain an estimation of the mass within a radius $\theta$ as:  \begin{equation*}  M(\theta) = \dfrac{\theta_{E} c }{4G} \theta  \end{equation*}  \subsubsection{NFW profile}  The NFW profile is derived from fitting the density profile  of numerical simulations of cold dark matter halos (Navarro  et al. 1995, 1997). This profiles depend on two parameters, the virial radius, $R_{200}$, and a dimensionless concentration parameter:  \begin{equation*}  \rho(r) = \dfrac{\rho_{c} \delta_{c}}{(r/r_{s})(1+r/r_{s})^{2}}   \end{equation*}  where $r_{s}$ is the scale radius, $r_{s} = R_{200}/c$ and $\delta_{c}$ is the characteristic overdensity of the halo,  \begin{equation*}  \delta_{c} = \frac{200}{3} \dfrac{c^{3}}{\ln(1+c)+c/(1+c)}   \end{equation*}  The properties of the NFW profile in the context of gravitational lensing have been discussed by many authors (Bartelmann 1996, Wright \& Brainerd 2000). The radial dependence of the shear as function of $x:=\theta / r_{s}$ is given by:  \begin{equation*}  \gamma(x) = \dfrac{2r_{s}\delta_{c}\rho_{c}}{\Sigma_{c}} j(x)   \end{equation*}  where $\Sigma_{c}$ is the \textit{critical surface mass density} and $j(x)$ is given by: \begin{eqnarray*}  $j(x < 1) & = & \dfrac{4 \arctanh \sqrt{\frac{1-x}{1+x}}}{x^{2} \sqrt{1-x^{2}}} + \dfrac{2 \ln(\frac{x}{2})}{x^{2}} - \dfrac{1}{x^{2}-1} \\  & &+ \dfrac{2 \arctanh \sqrt{\frac{1-x}{1+x}}}{(x^{2}-1) \sqrt{1-x^{2}}} \\ $  \end{eqnarray*}  \begin{eqnarray*}  $j(x = 1) = 2 \ln \left(\dfrac{1}{2} \right) + \dfrac{5}{3}$\\  $j(x < 1) = \dfrac{4 \arctan \sqrt{\frac{1-x}{1+x}}}{x^{2} \sqrt{1-x^{2}}} + \dfrac{2 \ln(\frac{x}{2})}{x^{2}} - \dfrac{1}{x^{2}-1} + \dfrac{2 \arctan \sqrt{\frac{1-x}{1+x}}}{(x^{2}-1)^{3/2}}} $  \end{eqnarray*}  If we fit the shear for different radius we can have an estimation of the parameters $c$ and $R_{200}$. Once we obtain these parameters we can compute the mass within a radius $\theta$ as:  \begin{equation*}  M(\theta) = \int^{\theta}_0 2\pi \theta \Sigma(\theta) d\theta = \int^{\theta}_0 4\pi \theta \rho_{c} \delta_{c} r_{s} F(x) d\theta  \end{equation*}  where,  \begin{eqnarray*}  $F(x < 1) & = & \dfrac{1}{x^{2}-1} (1 - \dfrac{1}{\sqrt{1-x^{2}}} \arcosh \dfrac{1}{x} )$  $F(x = 1) = \dfrac{1}{3}$ \\  $F(x > 1) & = & \dfrac{1}{x^{2}-1} (1 - \dfrac{1}{\sqrt{x^{2}-1}} \arccos \dfrac{1}{x} )$  \end{eqnarray*}  There is a well-known degeneracy between the parameters $R_{200}$ and $c$ when fitting the shear profile in the weak lensing regime. This is due to the lack of information on the mass distribution near the cluster center and only a combination of strong and weak lensing can raise it and provide useful constraints on the concentration parameter. Since we do not have strong lensing modeling of the clusters in the sample,   we decided to fix the concentration parameter, $c = 5$, and fit the mass profile with only one free parameter, $R_{200}$.