Chuck-Hou Yee edited correlations.tex  over 7 years ago

Commit id: ab4d7a0d7d374bf7c59df1813fcc284f47960b72

deletions | additions      

       

\begin{equation}  G(\omega) = \frac{1}{\omega + \nabla^2/2 - V_\text{ion} - \Sigma(\omega)}.  \end{equation}  We have written the definition of $G(\omega)$ in atomic units for electrons in the lattice potential of the nuclear ions. The self-energy $\Sigma(\omega)$ is generally frequency-dependent, and we have omitted arguments the argument  $\vec{r}$ from all quantities. The eigenenergies that are the result diagonalizing the Kohn-Sham hamiltonian $H_\text{KS} = -\frac{1}{2}\vec{\nabla}^2 + V_\text{KS}(\vec{r})$ lack the ability to capture the frequency-dependent effects of many-body interactions, and should not be interpreted as physical eigenvalues. Nevertheless, we often ignore formal justification and compute the Green's function using the Kohn-Sham solution anyway: \begin{equation}  G_\text{KS}(\omega) = \frac{1}{\omega - H_\text{KS}}.  \end{equation}