Chuck-Hou Yee edited correlations.tex  over 7 years ago

Commit id: 8845113a846dafb71f194477706d3f7177ab56f2

deletions | additions      

       

\begin{equation}  G_\text{KS}(\omega) = \frac{1}{\omega - H_\text{KS}}.  \end{equation}  Thus, we find the self-energy in DFT $\Sigma_\text{KS} = V_\text{H} + V_\text{xc}$ is in fact frequency independent. In comparing with experiment, we always expect deviations at high frequencies because the non-interacting Kohn-Sham framework should only work well near the Fermi surface, where the quasiparticles of Fermi liquid theory are well-defined. However, at low frequencies (which for this section  we take to mean $\omega \lesssim 1$~eV, a typical chemical scale) we may hope the DFT spectrum may resemble observations, and in many cases it does. We call these materials weakly correlated. Strongly correlated materials are those compounds where the actual self-energy $\Sigma(\omega)$ deviates strongly from the DFT reference $V_\text{H} + V_\text{xc}$ at low frequencies. We can crudely categorize the effects of correlations by considering the dominant term in the low-order expansion of the self-energy deviation  \begin{equation}