Chuck-Hou Yee edited introduction.tex  over 7 years ago

Commit id: 5422b200fa45732f9595676c10090fe338d32ecf

deletions | additions      

       

The dream of materials design is to leverage, rather than ignore, our theories of electronic structure and combine them with our increasing computational ability to discover new materials. Beyond its technological implications, the challenge of materials design is also one of great intellectual depth. In principle, we know the fundamental equation needed to model the behavior of a material: it is the Schr\"odinger equation describing electrons moving in the potential of a periodic lattice, mutually interacting via the Coulomb repulsion. Solving this equation is another matter.  We In practice, we  can distinguish classes of classify  materials by how well we can solve its their  corresponding Schr\"odinger equation in practice. equation.  For weakly correlated materials, which encompass the class of compounds encompassing  simple metals, insulators and semiconductors, called weakly correlated materials,  we have a well-developed theory of their excitation spectra called Fermi liquid theory. Additionally, we have a theoretical framework which naturally lends itself to computational implementations for modeling their properties: density functional theory (DFT). DFT is a workhorse of the materials science community, providing efficient and accurate computations of the total energy and distribution of electrons of a compound, requiring only the coordinates of the atoms in its crystal lattice as input. From the total energy, one can obtain lattice constants, equations of state and the spectrum of lattice vibrations. Furthermore, one can obtain electronic properties such as band gaps, electric polarization and topological numbers, which are by no means trivial for these "simple" compounds.