Trigonometric noisy real Prony, 2D

General solving approach for general complex Prony problems doesn’t work well for noisy system. Consider the following numerical example: we have two-dimensional trigonometry Prony system (\(S_1\)). Let’s add some noise to the moments and try to reconstruct original system by the general approach (\(S_2\)) and the trigonometric approach (\(S_3\)). The numerical results are in the table \ref{tbl:noisy}.

\label{tbl:noisy}

\(x_1\) \(x_2\) \(a_1\) \(a_2\) \(m_0\) \(m_1\) \(m_2\) \(m_3\)
\(S_1\) 0.891-0.454i 0.951-0.309i 1+0i 1+0i 2+0i 1.84-0.76i 1.4-1.4i 0.74-1.8i
\(S_2\) 0.919-0.385i 1.93-6.15i 2.04+0.09i 0.0005-0.0002i 2.04+0.09i 1.91-0.71i 1.46-1.39i 0.76-1.7i
\(S_3\) 0.953-0.304i 0.916-0.402i 1.02+0i 1.02+0i 2.04+0.09i 1.91-0.71i 1.46-1.39i 0.76-1.7i
\(S_2-S_1\) 0.0277+0.0691i 0.98-5.84i 1.04+0.09i -0.999-0i 0.0425+0.0877i 0.067+0.0542i 0.0624+0.0105i 0.019+0.0951i
\(S_3-S_1\) 0.062+0.15i -0.0355-0.0932i 0.0222+0i 0.0222+0i 0.0425+0.0877i 0.067+0.0542i 0.0624+0.0105i 0.019+0.0951i

We can see that the general approach gives a big error for \(x_2\) and \(a_2\). The trigonometric approach solves the noisy problem well.