Carson edited sectionSection_title.tex  almost 9 years ago

Commit id: 0febfbe89c1da1843978c2678b42ed0dc74ba0c4

deletions | additions      

       

Once this is done, the equations can be shortened. The best fit candidates are as follows:  \makebox[0pt][1]{\emph{Exponential} Fit Equation}  \makebox[\textwidth][c]{$\dot{V}=\lambda V$} \begin{table}   \begin{tabular}{ c c }  \\ \emph{Exponential} Fit Equation & $\dot{V}=\lambda V$  \\ \noindent  \makebox[0pt][l]{\emph{Power \emph{Power  Rule} Fit Equation}%  \makebox[\textwidth][c]{$\dot{V}=\lambda V^{a}$}%  \\ Equation & $\dot{V}=\lambda V^{a}$  \\ \noindent  \makebox[0pt][l]{\emph{Logistic} \emph{Logistic}  Fit Equation}%  \makebox[\textwidth][c]{$\dot{V}=\lambda Equation & $\dot{V}=\lambda  V\left ( 1-\frac{V}{K} \right )$}% )$  \\ \\  \noindent  \makebox[0pt][l]{\emph{Linear} \emph{Linear}  Fit Equation}%  \makebox[\textwidth][c]{$\dot{V}=\frac{aV}{V+b}$}%  \\ Equation & $\dot{V}=\frac{aV}{V+b}$  \\ \noindent  \makebox[0pt][l]{\emph{Surface} \emph{Surface}  Fit Equation}%  \makebox[\textwidth][c]{$\dot{V}=\frac{aV}{(V+b)^{\frac{1}{3}}}$}% Equation & $\dot{V}=\frac{aV}{(V+b)^{\frac{1}{3}}}$  \\ \\  \noindent  \makebox[0pt][l]{\emph{Gompertz} \emph{Gompertz}  Fit Equation}%  \makebox[\textwidth][c]{$\dot{V}=aV\ln Equation & $\dot{V}=aV\ln  \left ( \frac{b}{V+c} \right )$}%  \\ )$  \\ \noindent  \makebox[0pt][l]{\emph{Bertalanffy} \emph{Bertalanffy}  Fit Equation}%  \makebox[\textwidth][c]{$\dot{V}=aV^{\frac{2}{3}}-bV$}% Equation & $\dot{V}=aV^{\frac{2}{3}}-bV$ \\   & \\   \end{tabular}   \end{table}  \subsection{Data Selection}  \subsection{Fitting Procedure}