Pol Grasland-Mongrain edited The_absorption_of_the_laser__.tex  over 8 years ago

Commit id: d81dce7260fe70f5c553afd05caa6cd0383cd6ea

deletions | additions      

       

u_z = \frac{3 \alpha E}{\rho C S}  \label{eq:deplThermoApprox}  \end{equation}  Substituting same experimental parameters as previously and $\alpha$ = 70.10$^{-6}$ K$^{-1}$ (water linear thermal dilatation coefficient), we obtain a displacement $u_z$ = 0.025 $\mu$m. While slightly higher, this value is in good agreement with experimental displacement (about 0.02 $\mu$m). Note that the theory supposed that the displacement is directed outside the medium, which is seen in the experimental images in the middle of the beam, as indicated by the white circle in the figure \ref{figElastoPVA}. \ref{figElastoPVA}-(A).  To calculate the propagation of the displacement along space and time, we have to take into account the transverse dilatation which leads to stronger displacements than along Z. We modeled thus the thermoelastic regime in 2D as two opposite forces directed along Y axis with a depth of 40 $\mu$m and decreasing linearly from 2.5 to 0 mm (respectively -2.5 to 0 mm) \cite{Davies_1993}. The magnitude of the force along space and time is stored in a matrix $H_y^{thermo}(y,z,t)$ (note that X and Z components of the force are supposed null). Propagation as a shear wave along Z axis was calculated using Green operators $G_{yz}$ as calculated by Aki Richards \cite{aki1980quantitative}:  \begin{equation}