Pol Grasland-Mongrain edited Introduction.tex  over 8 years ago

Commit id: c92f97150e1b3304c16895e4e3786f646a60e197

deletions | additions      

       

In a medical context, induction of compression waves by laser has been studied for the last ten years, with the development of photoacoustic imaging \cite{Xu_2006}. In this technique, a laser beam is absorbed by the tissue, which induces compression waves by thermal expansion. Using an iterative algorithm and a light propagation model, acoustic sources can be recovered with appropriate detection scheme to identify optical absorption in the medium \cite{22442475}. As the optical absorption coefficient of the tissue depends on the optical wavelength, different structures can be observed by tuning properly the laser wavelength. For example, oxygenated and de-oxygenated haemoglobin can be discriminated in this way \cite{16674205}.  The elastic waves used in photoacoustic imaging are typically of a few megahertz. At this frequency, shear waves are quickly attenuated, typically over a few microns in soft tissues, so only compression waves can propagate over a few centimeters. Shear waves have drawn an increasing interest in medical imaging, with the development of shear wave elastography techniques for the last two decades \cite{muthupillai1995magnetic}, \cite{sandrin2002shear}. As its names indicates, this term covers the techniques used to measure or map the elastic properties of biological tissues using shear wave propagation. The shear modulus, directly proportional to Young's modulus in soft tissues, variesindeed  of several orders of magnitude between different tissues in human body and potentially offers a good contrast. As a shear wave propagates in an organ at a speed proportional to the square root of the shear modulus, measuring its speed throughout the organ allows to compute the shear modulus of the tissue. Shear waves can be induced by an external vibrator \cite{muthupillai1995magnetic}, a focused acoustic beam \cite{sarvazyan1998shear}, \cite{11937286}, the Lorentz force\cite{grasland2014elastoEMarticle}, or natural body displacements \cite{gallot2011passive}. Shear wave elastography techniques have been successfully applied for the detection of various pathologies in organs such as the liver \cite{sandrin2003transient}, the breast \cite{goddi2012breast}, \cite{sinkus2005viscoelastic}, the prostate \cite{cochlin2002elastography}, \cite{12878247}, the bladder \cite{25574440} and the eye cornea \cite{tanter2009high}, \cite{22627517}. In this study, we show that shear waves can be induced in soft tissues by a laser beam. We also propose a model for the underlying physics. We finally applied the technique in a biological tissue to evaluate its potential application in shear wave elastography. 

u_z = \frac{(3\lambda + 2\mu)}{(\lambda + 2\mu)} \frac{\alpha E \zeta}{\rho C S \zeta}  \label{eq:deplThermo}  \end{equation}  As in a biological soft tissues, $\mu \ll \lambda$, the displacement $u_z$ can be approximated as $\frac{3 \alpha E}{\rho C S}$. Taking as an order of magnitude $\alpha$ = 70.10$^{-6}$ K$^{-1}$ (water linear thermal dilatation coefficient), $E$ = 200 mJ, $\rho$ = 1000 kg.m$^{-3}$ (water density), $C$ = 4180 kg.m$^{-3}$ (water calorific capacity) and $S$ = 20 mm$^2$, we obtain a displacement $u_z$= 0.5 $\mu$m. This value is slightly smaller than the typical ultrasound elastography  resolution of displacement, typically of a few micrometers. (5--10 $\mu$m \cite{22545033}.  In a 3D model, displacements along X and Y axis would also occurs, as the local expansion acts as dipolar forces parallel to the surface. In the ablative regime, the local increase of temperature is so high that the surface of the medium is vaporized. This phenomenon creates a stress $\sigma_{zz}$ in the medium, as the sum of the P-wave modulus and a term given by the second law of motion \cite{scruby1990laser}:  \begin{equation}