Pol Grasland-Mongrain edited Simu disp maps.tex  about 8 years ago

Commit id: c2673164c4883d9b56c7d020d5a182218b08ced8

deletions | additions      

       

Let's describe now Next, we sought to characterize  the other regime. regim observed in our experiments.  Solving the  equation \ref{eq:eqChaleurApprox} with the  same experimental parameters as before used previously,  but with  a laser energy of 200 mJ, we find found  a maximum increase of in  temperature of 60 K, i.e., a maximum medium temperature of about298+60 =  360 K assuming a room temperature of about 298  K. While slightly belowto  the vaporization point of our medium, supposed close to 373K (water vaporization temperature), it can its proximity to the water vaporization temperature (373 K) may  be sufficient to vaporize the medium, as medium. Indeed,  it has been demonstrated thatthe presence of small particles like the  graphite and other small  particles acts can act  as nucleation sites and to  facilitatethus  the vaporization of the medium atlower  temperature lower than the vaporization point  \cite{Alimpiev_1995}. Vaporization A series  of the particles reactions then  leadsby reaction  to displacements inside the medium, which generatethen  shear waves: waves;  this constitutes the \textit{ablative regime}. To estimate the initial displacement amplitude in this regime, wesupposed  again assumed that  the medium as was  homogeneous and isotropic isotropic,  and we discarded any boundary effect. The stress $\sigma_{zz}$ stress, $\sigma_{zz}$,  is now defined as  the sum of the axial strain component and a term given by the second law of motion due to caused by  the reaction to of  the particles ejected outside the medium when they reach upon reaching the  vaporization point \cite{ready1971effects}: \begin{equation}   \sigma_{zz} = (\lambda + 2 \mu) \frac{\partial u_z}{\partial z} - \frac{1}{\rho}\frac{I^2}{(L+C(T_V-T_0))^2}  \label{eq:stressAbla}  \end{equation} where $L$ is the latent heat required to vaporize the solid, and  $T_0$ and $T_V$ are  the initial and vaporization temperatures. temperatures, respectively.  By assuming $\mu \ll \lambda$ and a zero stress state  at the medium surface, equation \ref{eq:stressAbla} leads to a displacement $u_z$: displacement, $u_z$, of:  \begin{equation}  u_z = \frac{\zeta}{\rho \lambda}\frac{I^2}{(L+C(T_V-T_0))^2}  \label{eq:deplAblaApprox}  \end{equation}  Using high-energy experimental parameter, parameters,  $\zeta \approx \gamma^{-1} = 40 \mu$m (average depth of absorption), $\lambda$ = 2 GPa (first Lamé's coefficient of water), $L$ = 2.2 MJ.kg$^{-1}$ (vaporization latent heat of water) water),  and $T_V-T_0$ = 373-298 = 75 K, we obtain a displacement $u_z$ of 2.9 $\mu$m. This Again, this  value isagain  in good high  agreement with experimental the experimentally obtained  displacement (2.5 $\mu$m). Both theoretical and experimental displacements are directed towards the  inside of  the medium (seewhite circle  arrow in the white circle in  Figure \ref{figElastoPVA}-(B)). To calculate the propagation of the displacement along as a function of  space and time, we modeled the ablation ablative  regime as a point force directed along the  Z direction axis  with a depth of 40 $\mu$m and of a  constant value from -2.5 to 2.5 mm. The magnitude of the force is stored in a matrix matrix,  $H_z^{abla}(y,z,t)$. Displacements along the  Z axis  are again equal to the convolution between $H_z^{abla}$ and $G_{zz}$ \cite{aki1980quantitative}: \begin{equation}  G_{zz}(r,\theta,t) = \frac{\cos^2 \theta}{4\pi \rho c_p^2 r} \delta(t-\frac{r}{c_p}) + \frac{\sin^2 \theta}{4\pi \rho c_s^2 r} \delta(t-\frac{r}{c_s})  \label{eq:Gzz} 

\begin{equation}  + \frac{3\cos^2 \theta-1}{4\pi \rho r^3} \int\limits_{r/c_p}^{r/c_s}{\tau \delta(t-\tau)d\tau}  \end{equation}  with the  same notations as presented  in equation \ref{eq:Gyz}. Usingsame values for  the physical quantities as previously, results are illustrated in Figure \ref{figGreen}-(B) which represents values previously defined,  displacement maps along the  Z axis, axis were calculated  1.0, 1.5, 2.0, 2.5 2.5,  and 3.0 ms after force application. application, as illustrated in Figure \ref{figGreen}-(B).  The displacement maps present many similarities with to  the experimental results ofthe  Figure \ref{figElastoPVA}-(B), with initial displacement directed towards the  inside of  the medium medium,  and propagation of only two half cycles. Ablation The ablative  regime was also confirmed visually: at visually. At  high power, adisk of  paler color colored disk  of the same size as the beam diameter appears appeared  at the impact location site  ofthe  laser impact  on the phantom, which is consistent with the theory ofa  partial vaporization of the medium. This was not observed in the low-energy experiments.