Pol Grasland-Mongrain edited Introduction.tex  over 8 years ago

Commit id: ac7908634db8eb6e4c3ef927f377d78c8b48bbfb

deletions | additions      

       

In a medical context, induction of compression waves by laser has been studied for the last ten years, with the development of photoacoustic imaging \cite{Xu_2006}. In this technique, a laser beam is absorbed by the tissue, which induces compression waves by thermal expansion. Using an iterative algorithm and a light propagation model, acoustic sources can be recovered with appropriate detection scheme to identify optical absorption in the medium \cite{22442475}. As the optical absorption coefficient of the tissue depends on the optical wavelength, different structures can be observed by tuning properly the laser wavelength. For example, oxygenated and de-oxygenated haemoglobin can be discriminated in this way \cite{16674205}.  The elastic waves used in photoacoustic imaging are typically of a few megahertz. At this frequency, shear waves are quickly attenuated, typically over a few microns in soft tissues, so only compression waves can propagate over a few centimeters. Shear waves have drawn an increasing interest in medical imaging, with the development of shear wave elastography techniques for the last two decades \cite{muthupillai1995magnetic}, \cite{sandrin2002shear}. As its names indicates, this term covers the techniques used to measure or map the elastic properties of biological tissues using shear wave propagation. The shear modulus, directly proportional to Young's modulus in soft tissues, varies indeed of several orders of magnitude between different tissues in human body and potentially offers an excellent a good  contrast. As a shear wave propagates in an organ at a speed proportional to the square root of the shear modulus, measuring its speed throughout the organ allows to compute the shear modulus of the tissue. Shear waves can be induced by an external vibrator \cite{muthupillai1995magnetic}, a focused acoustic beam \cite{sarvazyan1998shear}, \cite{11937286}, the Lorentz force\cite{grasland2014elastoEMarticle}, or natural body displacements \cite{gallot2011passive}. Shear wave elastography techniques have been successfully applied for the detection of various pathologies in organs such as the liver \cite{sandrin2003transient}, the breast \cite{goddi2012breast}, \cite{sinkus2005viscoelastic}, the prostate \cite{cochlin2002elastography}, \cite{12878247}, the bladder \cite{25574440} and the eye cornea \cite{tanter2009high}, \cite{22627517}. In this study, we show that shear waves can be induced in soft tissues by a laser beam. We also propose a model for the underlying physics. We finally applied the technique in a biological tissue to evaluate its potential application in shear wave elastography.