Pol Grasland-Mongrain edited Let_s_describe_the_phenomenon__.tex  over 8 years ago

Commit id: 85fd018b5de20681edcec425ba734b1fb20b1d06

deletions | additions      

       

\end{equation}  where $\rho$ is the density, $C$ the heat capacity and $\kappa$ the thermal diffusivity. The thermal diffusion path, equal to $\sqrt{4\kappa \tau}$, with $\tau$ = 10 ns the laser emission duration and $\kappa$ = 1.43 10$^{-7}$ m$^2$.s$^{-1}$ for water \cite{Blumm_2003}, is approximately equal here to 80 nm. As $\gamma^{-1} \gg \sqrt{4\kappa t}$, propagation of heat is negligible during laser emission, so that equation \ref{eq:eqChaleur} can be simplified as:  \begin{equation}  \frac{\partial T}{\partial t} = \frac{q}{\rho \frac{\gamma I}{\rho  C} \label{eq:eqChaleurApprox}  \end{equation}