Pol Grasland-Mongrain edited Let_s_describe_the_phenomenon__.tex  over 8 years ago

Commit id: 7de42737db1ed75513a9607e47b330da8981082f

deletions | additions      

       

\sigma_{zz} = (\lambda + 2 \mu) \frac{\partial u_z}{\partial z} - 3(\lambda + \frac{2}{3}\mu) \frac{\alpha E}{\rho C S \zeta}  \label{eq:stressThermo}  \end{equation}  where $\lambda + 2 \mu$ is the P-wave modulus and $\lambda + \frac{2}{3}\mu$ the bulk modulus with $\lambda$ and $\mu$ respectively the first and second Lamé's coefficient, $\alpha$ is the thermal dilatation coefficient and $\zeta$ theaverage  depth of laser beam absorption. over which there is a temperature rise.  In the absence of external constraints normal to the surface, the stress across the surface must be zero, i.e. $\sigma_{zz} (z=0) = 0$, so that equation \ref{eq:stressThermo} can be integrated, giving a displacement $u_z$ from the surface: \begin{equation}  u_z = \frac{(3\lambda + 2\mu)}{(\lambda + 2\mu)} \frac{\alpha E \zeta}{\rho C S \zeta}  \label{eq:deplThermo}