Pol Grasland-Mongrain edited Exp results.tex  about 8 years ago

Commit id: 7238a4f21163e4b5a49d57fb28570897f8b68d1b

deletions | additions      

       

The Figure \ref{figElastoPVA} illustrates the  resulting displacement amplitude maps observed  along Z axis (defined as the  ultrasound axis) axis at  1.0, 1.5, 2.0, 2.5 2.5,  and 3.0 ms after laser emissiontowards the phantom are illustrated in Figure \ref{figElastoPVA},  for two laser beam energies (10 and 200 mJ). Displacements reached an amplitude of 0.02 $\mu$m for the 10 mJ 10-mJ  laser beam and 2.5 $\mu$m for the 200 mJ. 200-mJ laser beam.  They propagated at a velocity of 5.5$\pm$0.5 m.s$^{-1}$, which isa  typicalvalue  for a  shear wave, and but  far lower slower  than the  usual velocity of a  compression wave velocity, about (about  1500 m.s$^{-1}$ in soft tissues. tissues).  Supposing the medium density $\rho$ density, $\rho$,  of 1000 kg.m$^{-3}$ (water density), it the propagation velocity  corresponds to a shear modulus of 30$\pm$5 kPa, which is in the  range of the expected value of the phantom. Shear wave frequency was equal to 500 $\pm$ 50 Hz. A careful Careful  observation reveals several  differences in the propagation patterns. patterns of the two laser beam energies.  At low energy, first central displacements aremore  directed towards the  outside of  the medium (left arrow) arrow),  andwe observe  three half cycles. At cycles are observed. Conversely, at  high energy, first displacements are directed towards the  inside of  the medium (right arrow) arrow),  and only two half cycles can be observed.