Pol Grasland-Mongrain edited The_absorption_of_the_laser__.tex  about 8 years ago

Commit id: 715289e49831d3121c5a874f8260af5ddb838db2

deletions | additions      

       

The absorption Absorption  of the laser beam by the medium subsequently  givesthen  rise to an absorbed optical energy energy,  $\gamma I$. Assuming that all the optical energy is converted to heat, a local increase of in  temperature appears. occurs.  Temperature distribution $T$ distribution, $T$,  in the  absence of convection andof  phase transition transition,  can be computed using the following  heat equation: \begin{equation}  k \nabla ^2 T = \rho C \frac{\partial T}{\partial t} - \gamma I  \label{eq:eqChaleur}  \end{equation}  where $\rho$ is the density, $C$ is  the heat capacity and $k$ is  the thermal conductivity. Calculating the exact solution of to  this equation is behind beyond  the scope of this article, butduring laser emission,  we can roughly approximate the first term by and second terms to be  $k T / \gamma^2$ andthe second by  $\rho C T / \tau$. Taking \tau$, respectively, during laser emission. Given that  $k$ = 0.6 W.m$^{-1}$.K$^{-1}$, W.m$^{-1}$.K$^{-1}$ (water thermal conductivity),  $\rho$ = 1000 kg.m$^{-3}$, kg.m$^{-3}$ (water density),  $C$ = 4180 J.kg$^{-1}$.m$^{-3}$ (waterthermal conductivity, density and  heat capacity respectively), capacity),  $\gamma^{-1} \approx$ 40 $\mu$m and $\tau$ = 10 ns, the first term is negligible compared to the second one, so that one; thus, the  equation \ref{eq:eqChaleur} can be simplified as: \begin{equation}  \frac{\partial T}{\partial t} = \frac{\gamma I}{\rho C} = \frac{\gamma}{\rho C S} \frac{dE}{dt}  \label{eq:eqChaleurApprox}  \end{equation}  Substituting low-energy experimental parameters ($E$ = 10 mJ, $S$ = 20 mm$^{2}$) leads to a maximum increase of in  temperature of 3 K. This increase of temperature gives rise to K, which produces  a local dilatation of the medium. The induced displacements can then generateto  shear waves: this waves, which  constitutes the \textit{thermoelastic regime}. To estimate the initial displacement amplitude in this regime, we supposed assumed  the medium as was  homogeneous and isotropic. As the depth of absorption (about 40 $\mu$m) is hundred 100  times smaller than the beam diameter (5 mm), we discarded any boundaries effect. boundary effects.  The stress $\sigma_{zz}$ stress, $\sigma_{zz}$,  is the sum between of  the axial strain component and the thermal expansion component \cite{scruby1990laser}: \begin{equation}  \sigma_{zz} = (\lambda + 2 \mu) \frac{\partial u_z}{\partial z} - 3(\lambda + \frac{2}{3}\mu) \alpha \frac{ E}{\rho C S \zeta}  \label{eq:stressThermo}  \end{equation}  where $\lambda$ and $\mu$ are respectively the first and second Lamé's coefficient, coefficients,  $\alpha$ is  the thermal dilatation coefficient coefficient,  and $\zeta$ is  the average depth of absorption. This equation can be simplified by remarking the fact  that in most soft media, including biological tissues, $\mu \ll \lambda$. Moreover, in the absence of external constraints normal to the surface, the stress across the surface must be zero, i.e. $\sigma_{zz} (z=0) = 0$, so that 0$. This allows the  equation \ref{eq:stressThermo} can to  be integrated, giving a displacement $u_z$ the following displacement, $u_z$,  from the surface: \begin{equation}  u_z = \frac{3 \alpha E}{\rho C S}  \label{eq:deplThermoApprox}  \end{equation}  Substituting the  same experimental parameters as used  previously and along with  $\alpha$ = 70.10$^{-6}$ K$^{-1}$ (water linear thermal dilatation coefficient), we obtain a displacement $u_z$ = of  0.025 $\mu$m. This value is very close to the measured experimental displacement (about 0.02 $\mu$m). Note that both the  theoretical and experimental central displacements are directed towards the  outside of  the medium (see white circle arrow in the Figure \ref{figElastoPVA}-(A)). To calculate the propagation of the displacements as shear waves, we have to take into account must first consider  the transverse dilatation dilatation,  which leads to stronger displacements than those occurring  along Z. the Z axis.  Wemodeled  thus modeled  the thermoelastic regime in 2D as two opposite forces directed along the  Y axis with a depth of 40 $\mu$m and with an amplitude  decreasing linearly respectively  from 2.5 to 0 mm (respectively and from  -2.5 to 0 mm) mm  \cite{Davies_1993}. The magnitude of the force along space and time is stored in a matrix matrix,  $H_y^{thermo}(y,z,t)$. Displacements along the  Z axis  are then equal to the convolution between $H_y^{thermo} (y,z,t)$ with and  $G_{yz}$ \cite{aki1980quantitative}: \begin{equation}  G_{yz}(r,\theta,t) = \frac{\cos \theta \sin \theta}{4\pi \rho c_p^2 r} \delta(t-\frac{r}{c_p}) - \frac{\sin \theta \cos \theta}{4\pi \rho c_s^2 r} \delta(t-\frac{r}{c_s})  \label{eq:Gyz} 

+\frac{3\cos \theta \sin \theta}{4\pi \rho r^3} \int\limits_{r/c_p}^{r/c_s}{\tau \delta(t-\tau) d\tau}  \label{eq:Gyz2}  \end{equation}  where (r,$\theta$) are the coordinates of the considered point with regards to the force location and direction, $c_p$ and $c_s$ are  the compression and shear wave speed respectively, $\tau$ is  the time time,  and $\delta$ is a  Dirac distributions. distribution.  The three terms of the equation  correspond respectively to the far-field compression wave, the far-field shear wave wave,  and the near-field component. Using $\rho$ constants \rho$  = 1000 kg.m$^{-3}$, $c_p$ = 1500 m.s$^{-1}$ and $c_s$ = 5.5 m.s$^{-1}$,results are illustrated in Figure \ref{figGreen}-(A) which represents  displacement maps along the  Z axis, axis were calculated  1.0, 1.5, 2.0, 2.5 2.5,  and 3.0 ms after force application. application, as illustrated in Figure \ref{figGreen}-(A).  The normalized displacement maps present many similarities with to  the experimental results displayed  inthe  Figure \ref{figElastoPVA}-(A), with a an  initial central displacement directed towards the  outside of  the medium medium,  and the a  propagation of three half cycles.