Pol Grasland-Mongrain edited When_a_laser_beam_of__1.tex  over 8 years ago

Commit id: 07c59ecce2f419590c6ff5f06f125bc916221073

deletions | additions      

       

\rho C \frac{\partial T}{\partial t} = k \nabla ^2 T + q  \label{eq:eqChaleur}  \end{equation}  where $\rho$ is the density,$\kappa$ the thermal diffusivity and  $C$ the heat capacity. capacity and $\kappa$ the thermal diffusivity.  The thermal diffusion path, equal to $\sqrt{4\kappa t}$, with $t$ the laser emission duration, is equal to 0.1 $\mu$m. As $\gamma^{-1} \gg \sqrt{4\kappa t}$, propagation of heat is negligible during laser emission, and term $k \nabla ^2 T$ can be neglected in equation \ref{eq:eqChaleur}. Combination with equation \ref{eq:opticalIntensity} and integration over time lead then to a temperature $T$ at the end of the laser emission:  \begin{equation}