Pol Grasland-Mongrain edited Introduction.tex  over 8 years ago

Commit id: 075993dd73d0e73f266e680f6348c25dc100ec4b

deletions | additions      

       

I=(1-R)I_0 \exp(- \gamma z)  \label{eq:opticalIntensity}  \end{equation}  where $R$ is the reflexion reflection  coefficient of the medium (typically less than a few pourcents for a black mat medium such as the one used here, so can be neglected thereafter), $I_0=\frac{1}{S}\frac{d E}{dt}$ the incident intensity distribution at the surface and $\gamma$ the absorption coefficient of the medium. !!!We measured the fraction of light which go through different thicknesses of the medium with a laser beam power measurement device (): it indicated that $\gamma \approx$ ??? m$^{-1}$ in our sample,!!! meaning that most of the radiation is absorbed in the first hundred of micrometers.  %Even if the sample is mainlyeFor low concentration medium, $\gamma$ is hard to calculate in our case, as the sample is composed of different materials, but the graphite, even in low concentration, absorbate much more than other components, so we can approximate $\gamma \approx \gamma_{graphite}$. For graphite particles of 1.85 $\mu$m at a concentration of 10 g.L$^{-1}$, the order of magnitude of $\gamma$ is 10$^4$ m$^{-1}$, meaning that most of the radiation is absorbed in the first hundred of micrometers of sample.