Jakub Urban Example results for 6962 with noise  over 9 years ago

Commit id: 84f3eb8ba6eee0736bc9b0e08f070d6f310288cf

deletions | additions      

    Binary files a/JUrban_SOFT2014.pdf and b/JUrban_SOFT2014.pdf differ        

EFIT++ & 1.02 & 0.0005 & 0.0002 & 0.002 & 0.002 & 0.008 & 0.002 & 0.002 & 0.02 & 0.1 & 0.02 & 0.02 & 0.009 \\  EFIT++ & 1.05 & 0.001 & 0.0008 & 4e-05 & 0.0003 & 0.004 & 0.003 & 0.005 & 0.01 & 0.07 & 0.02 & 0.01 & 0.009 \\  EFIT++ & 1.1 & 0.001 & 0.0005 & 0.005 & 0.0002 & 0.005 & 0.004 & 0.002 & 0.04 & 0.09 & 0.03 & 0.02 & 0.05 \\  VacTH & 0.97 & 0 & 0.001 & 0.0006 & 0.0002 & 0.002 & 8e-07 & 7e-05 & nan --  & nan --  & nan --  & nan --  & nan --  \\ VacTH & 0.99 & 4e-05 & 0.0004 & 0.001 & 0.0008 & 0.004 & 4e-07 & 0.0001 & nan --  & nan --  & nan --  & nan --  & nan --  \\ VacTH & 1.02 & 0.002 & 0.0008 & 0.005 & 0.002 & 0.01 & 2e-06 & 0.002 & nan --  & nan --  & nan --  & nan --  & nan --  \\ VacTH & 1.05 & 0.006 & 0.002 & 5e-05 & 0.002 & 0.01 & 3e-06 & 0.02 & nan --  & nan --  & nan --  & nan --  & nan --  \\ VacTH & 1.1 & 0.005 & 0.002 & 0.002 & 0.003 & 0.02 & 2e-06 & 0.003 & nan --  & nan --  & nan --  & nan --  & nan --  \\ \bottomrule  \end{tabular} 

\end{figure*}  The second shot for the comparison is 6962, which has been chosen because Thomson scattering (TS) profiles are available. On top of the same exercise as for 4275, In Fig. \ref{fig:ex6962}  we have calculated with FREEBIE show reconstructions for more realistic  equilibria with experimental and an artificial noise in the synthetic diagnostic signals.  TS pressure profiles. These equilibria of pressures were used in FREEBIE equilibria, which  course no longer feature linear $p'$ and $FF'$ profiles. Results It is apparent that the reconstruction is not as good as in the previous case. Nevertheless, the plasma shape is well reconstructed  with smoothed TS profiles EFIT++  and an artificial noise VacTH, except for the last time slice  in magnetic probes and flux loops with $\epsilon which VacTH yields too large plasma in the upper part.  $n_{\mathrm p}  = 0.03$ are shown n_{\mathrm q} = 4$ is used  in Fig. \ref{fig:ex6962}. this case as these values are minimum for reasonable VacTH results, while higher values are too sensitive to the input noise.  Expectedly, EFIT++ reconstruction with magnetic data only cannot reliably reconstruct kinetic plasma parameters, such as the stored energy or $q_0$. Rather unexpected is a relatively good agreement of $l_\mathrm{i}$. However, this agreement is compensated by a large error of $\beta_{\mathrm p}$ so that the quantity $\beta_{\mathrm p} + l_{\mathrm i}/2$ remain within a 10~\% error bar.  \begin{figure*}  \centering %\begin{center} 

\includegraphics[width=18cm]{figures/example_6962_TS_noise.pdf}  \hfill{}  %\end{center}  \caption{Contours \caption{Pressure profiles and contours  of $\bar\psi=\left(0.25,0.5,0.75,1\right)$, reconstruction from FREEBIE data, shot 4275. 6962 with Thomson scattering pressure profiles.  EFIT++ parameters: $n_\mathrm{mp} = 16$, $n_\mathrm{fl} = 4$, $n_{p'} = n_{FF'} = 1$. VacTH parameters: $n_\mathrm{mp} = 8$, $n_\mathrm{fl} = 16$, $n_{\mathrm p} = n_{\mathrm q} = 5$.} 4$.}  \label{fig:ex6962}  \end{figure*}  \begin{table*}  \centering  \begin{tabular}{lrrrrrrrrrrrrr}  \toprule  % code & time & $\Delta R_{\mathrm in}$ & $\Delta R_{\mathrm out}$ & $\Delta Z_{\mathrm min}$ & $\Delta Z_{\mathrm max}$ & $\delta \kappa$ & $E_\mathrm{mp}$ & $E_\mathrm{fl}$ & $\delta W$ & $\delta \left(\beta_{\mathrm p} + l_{\mathrm i}/2 \right)$ & $\delta q_0$ & $\delta q_{95}$ \\  code & time & $\Delta R_{\mathrm in}$ & $\Delta R_{\mathrm out}$ & $\Delta Z_{\mathrm min}$ & $\Delta Z_{\mathrm max}$ & $\delta \kappa$ & $E_\mathrm{mp}$ & $E_\mathrm{fl}$ & $\delta W$ & $\delta l_{\mathrm i}$ & $\delta \beta_{\mathrm p}$ & $\delta q_0$ & $\delta q_{95}$ \\  \midrule  EFIT++ & 980 & 0 & 0.005 & 0.001 & 8e-06 & 0.01 & 0.01 & 0.01 & 0.4 & 0.03 & 0.4 & 0.2 & 0.0008 \\  EFIT++ & 1014 & 0.003 & 0.006 & 0.02 & 0.01 & 0.06 & 0.03 & 0.03 & 0.3 & 0.008 & 0.3 & 0.2 & 0.08 \\  EFIT++ & 1080 & 0.007 & 0.002 & 0.005 & 0.002 & 0.04 & 0.03 & 0.03 & 0.3 & 0.01 & 0.3 & 0.2 & 0.02 \\  EFIT++ & 1147 & 0.008 & 0.008 & 0.01 & 0.006 & 0.06 & 0.03 & 0.02 & 0.3 & 0.06 & 0.3 & 0.3 & 0.05 \\  EFIT++ & 1214 & 0.0002 & 0.008 & 0.002 & 0.001 & 0.02 & 0.02 & 0.01 & 0.04 & 0.2 & 0.06 & 0.1 & 0.01 \\  VacTH & 980 & 0 & 0.01 & 0.01 & 0.007 & 0.02 & 0.0001 & 0.01 & -- & -- & -- & -- & -- \\  VacTH & 1014 & 0.006 & 0.0002 & 0.01 & 0.007 & 0.03 & 3e-05 & 0.01 & -- & -- & -- & -- & -- \\  VacTH & 1080 & 0.009 & 0.0007 & 0.003 & 0.0007 & 0.02 & 3e-05 & 0.01 & -- & -- & -- & -- & -- \\  VacTH & 1147 & 0.02 & 0.007 & 0.0009 & 0.002 & 0.01 & 5e-05 & 0.01 & -- & -- & -- & -- & -- \\  VacTH & 1214 & 0.03 & 0.009 & 0.02 & 0.03 & 0.02 & 0.0002 & 0.02 & -- & -- & -- & -- & -- \\  % EFIT++ & 1e+03 & 0 & 0.005 & 0.001 & 8e-06 & 0.01 & 0.01 & 0.01 & 0.4 & 0.03 & 0.4 & 0.2 & 0.0008 \\  % EFIT++ & 1e+03 & 0.003 & 0.006 & 0.02 & 0.01 & 0.06 & 0.03 & 0.03 & 0.3 & 0.008 & 0.3 & 0.2 & 0.08 \\  % EFIT++ & 1e+03 & 0.007 & 0.002 & 0.005 & 0.002 & 0.04 & 0.03 & 0.03 & 0.3 & 0.01 & 0.3 & 0.2 & 0.02 \\  % EFIT++ & 1e+03 & 0.008 & 0.008 & 0.01 & 0.006 & 0.06 & 0.03 & 0.02 & 0.3 & 0.06 & 0.3 & 0.3 & 0.05 \\  % EFIT++ & 1e+03 & 0.0002 & 0.008 & 0.002 & 0.001 & 0.02 & 0.02 & 0.01 & 0.04 & 0.2 & 0.06 & 0.1 & 0.01 \\  % VacTH & 1e+03 & 0 & 0.01 & 0.01 & 0.007 & 0.02 & 0.0001 & 0.01 & -- & -- & -- & -- & -- \\  % VacTH & 1e+03 & 0.006 & 0.0002 & 0.01 & 0.007 & 0.03 & 3e-05 & 0.01 & -- & -- & -- & -- & -- \\  % VacTH & 1e+03 & 0.009 & 0.0007 & 0.003 & 0.0007 & 0.02 & 3e-05 & 0.01 & -- & -- & -- & -- & -- \\  % VacTH & 1e+03 & 0.02 & 0.007 & 0.0009 & 0.002 & 0.01 & 5e-05 & 0.01 & -- & -- & -- & -- & -- \\  % VacTH & 1e+03 & 0.03 & 0.009 & 0.02 & 0.03 & 0.02 & 0.0002 & 0.02 & -- & -- & -- & -- & -- \\  \bottomrule  \end{tabular}  \caption{Errors for the same cases as in Fig. \ref{fig:ex6962}.}  \label{table:ex6962}  \end{table*}  % section results (end)