Paul Dennis edited untitled.tex  over 8 years ago

Commit id: 99370fe3c09dc31d9869ff835e4c061f0ff271bb

deletions | additions      

       

\[V \cdot \left( {{\Theta _i} - {\Theta _1}} \right) \cdot C_p^w \cdot {\rho _w} = \left[ {({x_1} - {x_2}) \cdot h \cdot \left( {\frac{{{\Theta _1} - {\Theta _2}}}{2}} \right) + \left( {{\Theta _1} - {\Theta _2}} \right) \cdot \left( {{x_1} - {x_2}} \right) \cdot {{\left( {\frac{{kt}}{\pi }} \right)}^{0.5}}} \right] \cdot C_p^r \cdot {\rho _r}\]  where V is the volume of fluid expelled along the fault, h is the effective width of the fault, $C_{p}^{w}$ and $C_{p}^{r}$ are the specific heat capacities of water and rock respectively, $\rho$_{w} and $\rho$_{r} the densities of water and rock, and k the thermal diffusivity of rock. Noting that$C_{p}^{w} \cdot \rho_{w}$ = $2 \cdot C_{p}^{r} \cdot \rho_{r}$  and selecting values of 120$^{\circ}$, 100$^{\circ}$ and 40$^{\circ}$C respectively for $\Theta$_{i}, $\Theta$_{1} and {\Theta$_{2}, 3000m for \textit{x}_{1}, 1000m for \textit{x}_{2} and an effective fault width of 1m we find that the maximum duration for an individual fluid pulse is a function