Paul Dennis edited untitled.tex  over 8 years ago

Commit id: 465dd96960a0007fa09ce02358aaa83804dbf2e8

deletions | additions      

       

In the geological record direct evidence for episodic and rapid flow of fluids associated with fracture and faulting is more equivocal. The presence of banded hydrothermal mineralisation of varying degrees of complexity in exhumed fault systems is often taken as evidence of pulsed fluid flow driven by seismic activity. Failure often results in brecciation of earlier generations of veins and the opening of large dilation voids that are then cemented by mineral precipitation from upwelling hydrothermal fluids \citep{Wright:2009ej}. The extent, however, to which mineral precipitation in the veins is contemporaneous with, and directly coupled to failure is open to question. Observations of epithermal mineralisation associated with dilation jogs between en-echelon fault segments suggests that in this structural setting fluid flow is rapid, being accompanied by rapid pressure fluctuations which triggers high level boiling, or effervesence of hydrothermal fluids. This results in precipitation of common gangue quartz and calcite as well as economic metalliferous deposits \citep{Sibson:1975cn, Sibson:1987dq, Henley:2000wn}.   A characteristic feature of systems with episodic pulsing of warm to hot fluid is the development of a thermal anomaly along the high permeability paths in which flow is focused. A good An  example is the perturbation of the temperature fieldthat has been  observed in Mississippi Valley Type (MVT)mineralisation  districts that lie around the upper Mississippi Valley and other  major Palaeozoic sediment basins in the continental USA (add \cite{Sangster:1994ub}(add  references). Cathles and co-workers have identified a difference in mineral precipitation temperatures reported for Mississippi Valley Type (MVT) deposits in the basal Cambrian quartzite aquifer of the Arkoma Basin and that typical of the host rock for the depth of burial at the time of mineralisation. Similar temperature differences have been reported between lead-zinc mineralisation temperatures and the host rock for deposits located in other sedimentary basins, for example to the south east of the Massif Central in France (Charef and Sheppard, 1986). In both cases a cogent argument can be made that the difference is due to heat advection associated with episodic release of hot fluids from deeper regions of the basins. In these example the fluids are thought to originate from overpressured brines in compacting sedimentary basins. Importantly, the fluid velocities required to produce the thermal anomaly are more than 1000 times greater than could be produced by the steady subsidence, compaction, and dewatering of the basins (Cathles and Smith, 1983). This suggests to us that the pulses result from a coupling between the pore fluid pressure and rock failure. We envisage that when pore fluid pressures approach lithostatic pressure either hydraulic fracturing or shear failure and development of dilation jogs along fault surfaces allows rapid dewatering of the sediment pile with channel flow of fluids into the basal aquifers. A corollary of the model proposed by Cathles and others is that the fluids involved in the mineralisation are trapped formation and not meteoric waters. Additionally the mineralisation involves restricted water volumes at consequent low water:rock ratios. Supporting evidence for formation waters is found in the fact that in the modern upper Mississippi Valley basins the deep waters are saline (Cathles, 1993). Were the waters to have been meteoric one expects the salinity to have been flushed out as recharge in areas of elevated terrain drives cross-basin flow along path lengths of several hundred kilometres. Thus the evidence of a thermal anomaly, coupled with remnant salinity in the sedimentary basin runs counter to the current paradigm for MVT formation which involves cross-basin flow of large volumes of gravity driven meteoric water (Garven plus other references). Rather a more dynamic regime involving fluid overpressure, fracture and fluid flow is implicated.   To help us understand these processes we have used clumped isotope thermometry to determine the temperature at which hydrothermal vein calcite precipitated in dilation voids of a Variscan strike-slip fault in the southern Pennines of the United Kingdom. The veins are associated with Pb-Zn and fluorite mineralisation and the fault was extensively worked as an economic deposit. Located at the margin of a lower Carboniferous platform on which shelf carbonates were deposited, the fault separates the platform from a deep water basin infilled with deep water facies limestones and shales of lower to upper Carboniferous age.