Henrik Holst edited Ellipsens_ekvation_E_x_frac__.tex  almost 9 years ago

Commit id: 7252fcb0d2f95d0375c2a6f5e8cdde2ffa79cf78

deletions | additions      

       

We can formulate this as  $$\frac{e_k^2}{e_k^2 + t} y_k = x_k, \qquad k=1,2,3$$  We plug this into the expression for $E$,  $$\frac{y_1^2}{t+e_1^2}+\frac{y_2^2}{t+e_2^2}+\frac{y_3^2}{t+e_3^2}-1=0$$ $$E(t)=\frac{y_1^2}{t+e_1^2}+\frac{y_2^2}{t+e_2^2}+\frac{y_3^2}{t+e_3^2}-1$$  The derivative of the left hand expression above:  $$-\frac{y_1^2}{(t+e_1^2)^2} $$E'(t)=-\frac{y_1^2}{(t+e_1^2)^2}  - \frac{y_2^2}{(t+e_2^2)^2} - \frac{y_3^2}{(t+e_3^2)^2}$$