Arif Bayirli edited untitled.tex  almost 9 years ago

Commit id: 24d4e7d57f6d025ed3f7fcafe265e45f070f0f2f

deletions | additions      

       

\section{The original model}  The equations in the original model are as follows:  \begin{equation}  \frac{dA_i}{dt} = A_i (K_a - A_i + \frac{\alpha^{PA}}{\lambda^q} \sum_{j<=i} P_j )  \label{denklem1} 

\label{denklem2}  \end{equation}    We insert the between-species competion terms as: as:\\  \begin{equation}  \beta = \epsilon T \nonumber  \end{equation}   where T = INSERT THE MATRIX HERE!! HERE!!\\  The modified equations for the equilibrium solutions become: become:\\  \begin{equation}  A_i^* + \sum_{j} \beta_{ij}A_j^* - \frac {\alpha^{AP}}{\lambda_i^q} \sum_{j<=i} P_j^* = K_a  \label{denklem3} 

\begin{equation}  P_i^* = \alpha^{AP} A_i^* + K_p   \label{denklem4}  \end{equation} \end{equation}\\  When we plug in the \ref{denklem4} into \ref{denklem3}, we get get\\  \begin{equation}  A_i^* + \sum_{j} \beta_{ij} A_j* - \frac{\alpha^{AP}}{\lambda_i^q} \sum_{j<=i} (\alpha^{AP} A_j^* + K_p ) = K_a \nonumber  \end{equation}   \begin{equation}  A_i^* + \sum_{j} \beta_{ij} A_j* - (\frac{\alpha^{PA} \alpha^{AP}}{\lambda_i^q} \sum_{j<=i} \alpha^{AP} A_j^*) - \frac{\alpha^{PA}}{\lambda_i^q} \sum_{j<=i} K_p = K_a   \label{denklem5}  \end{equation} \end{equation}\\  Using \ref{denklem5}, we can write the differential equation for pollunator species explicitely as follows: follows:\\  \begin{equation}  \frac{dA_i}{dt} = A_i ( K_a - A_i - \epsilon A_{i+1} - \epsilon A_{i-1} + \frac{\alpha^{AP}}{\lambda_i^q} \sum_{j<=i} P_j ) \nonumber   \end{equation} \end{equation}\\  At $\epsilon = 0 $ (i.e no competition between different pollunator species), the equilibrium populations satisfy: satisfy:\\  \begin{equation}  A_i^* +\frac{\alpha^{PA} \alpha^{AP}}{\lambda_i^q} \sum_{j<=1} A_j^* - i K_p \frac{\alpha^{PA}}{\lambda_i^q} = K_a  \label{denklem6}  \end{equation} \end{equation}\\  When we write $\beta$ explicetly, we have the equation: equation:\\  \begin{equation}  A_i^ + \epsilon \sum_{j} T_{ij} A_j - \frac{\alpha^{PA} \alpha^{AP}}{\lambda_i^q} \sum_{j<=1} A_j - i K_p \frac{\alpha^{PA}}{\lambda_i^q} = K_a  \label{denklem7}  \end{equation} \end{equation}\\  We make a perturbation to the equilibrium population by $\epsilon \delta A_i$: A_i$:\\  \begin{equation}  A_i = A_i^* + \epsilon \delta A_i \nonumber  \end{equation} \end{equation}\\  Then we put it into \ref{denklem7} we get: get:\\  \begin{equation}  A_i^* + \epsilon \delta A_i + \epsilon \sum_{j} T_{ij} ( A_j^* + \epsilon \delta A_j) - \frac{\alpha^{PA} \alpha^{AP}}{\lambda_i^q} \sum_{j<=1} (A_j^* + \epsilon \delta A_j) - i K_p \frac{\alpha^{PA}}{\lambda_i^q} = K_a \nonumber  \end{equation} \end{equation}\\  From \ref{denklem6}, the equilibrium terms vanish and we end up with: with:\\  \begin{equation}  \epsilon \delta A_i + \epsilon \sum_{j} T_{ij} A_j^* + \epsilon^2 \sum_{j} T_{ij} \delta A_j - \epsilon( \frac{\alpha^{PA} \alpha^{AP}}{\lambda_i^q} \sum_{j<=1} \delta A_j) = 0  \end{equation} \end{equation}\\  We neglect the second order $\epsilon^2$ term ($\epsilon^2 ~ 0$). Finaly we get: get:\\  \begin{eqnarray}  \epsilon ( \delta A_i + \frac{\alpha^{PA} \alpha^{AP}}{\lambda_i^q} \sum_{j<=1} \delta A_j) = - \epsilon \sum_{j} T_{ij} A_j^* \nonumber \\  \delta A_i - \frac{\alpha^{PA} \alpha^{AP}}{\lambda_i^q} \sum_{j<=1} \delta A_j) = -\sum_{j} T_{ij} A_j^*  \label{denklem8}  \end{eqnarray} \end{eqnarray}\\  We can rewrite \ref{denklem8} as a matrix equation: equation:\\  \begin{equation}  \sum_{j} M_{ij} \delta A_k = - \sum_{j} T_{ij} A_i^* = C_i^*  \end{equation} \end{equation}\\  where  \[ $  M_{ij} = \left\{ \begin{array}{ll} 1 - \frac{\alpha^{PA} \alpha^{AP}}{\lambda_i^q} & \mbox{if $j=i$}\\  -\frac{\alpha^{PA} \alpha^{AP}}{\lambda_i^q} & \mbox{if $j  0 & \mbox{if $j>i$} \end{array} \right. \] $\\  If we can invert the matrix M, we can write: write:\\  \begin{equation}  \delta A_i = (M^{-1} C^*)_{i}  \end{equation} \end{equation}\\  M is a lower-triangular matrix where the diagonal elements are the eigenvalues eigenvalues\\  $$ \mu_i = 1 - \frac{\alpha^{PA} \alpha^{AP}}{\lambda_i^q} > 0 $$ \\  since in our model $ \frac{\alpha^{PA} \alpha^{AP}}{\lambda_i^q} = \frac{1-0.00032}{(2i-1)^{1.64}} <1$ for all i.