Chien-Pin Chen initial template from professor  about 8 years ago

Commit id: 52f8b76ecc91b2373db3268b8b6ee6b8db63d873

deletions | additions      

       

\textit{Oh, an empty article!} \documentclass{article}  \usepackage{graphicx}  You can get started \begin{document}   \begin{center}  {\bf \Large Homework 2} \\  (Due on: Wed, April 15, 8:00PM)  \end{center}  \noindent {\bf Problem 1}. A stochastic process is defined as  \begin{equation}  x_{k}=x_{k-1}+m_k,\ \ \ x_{0}=0  \end{equation}  where the random variable $m_k$ is defined  by \textbf{double clicking} the probability density function $p(m_k)$  \begin{equation}  p(m_{k}) \sim \left\{  \begin{array}{l}  0, \ \ \ m_k < -1/2 \\  4(m_k+1/2), \ \ \ -1/2 \le m_k < 0 \\  2-4m_k, \ \ \ 0 \le m_k \le 1/2 \\  0, \ \ \ \ m_k > 1/2 \\  \end{array} \right.  \end{equation}  which is presented in the figure below. Find the expected value $E\{x_k\}$ and   the variance $E\{(x_k-\overline{x}_k)^2\}$ of  this text block process.  \begin{figure}[h]  \begin{center}  \includegraphics[width=0.3\textwidth]{HW3Fig1.png}  \end{center}  \end{figure}  \noindent {\bf Problem 2} (only for graduate students) It is known that if   $x$ is a random variable with a pdf $p_x(x)$, i.e., $x \sim p_x(x)$,   and $y$ is a random variable $y \sim p_y(y)$, then   $z=x+y$ is a random variable $z \sim p_z(z)$, where $p_z(z)=p_x(x)*p_y(y)$.   The symbol $*$ denotes the convolution, i.e.,  \begin{equation}  p_z(z)=p_z(x+y)=\int_{-\infty}^\infty p_y(z-x)p_x(x)dx  \end{equation}  (a) If $m_k \sim p(m_k)$, where $p(m_k)$ is depicted in  the figure,  and begin editing. You can also click the \textbf{Text} button below $m_k=n+h$, figure out $p_n(n)$ and   $p_h(h)$.   (b) Use your conclusion from (a)  to add new block elements. Or you can \textbf{drag write a MATLAB code that  generates the sequence from Problem 1. Generate the sequence   100 (or more) times  and drop an image} right onto this text. Happy writing! based on these sequences, verify the  results obtained in Problem 1.  \end{document}